NOTES: Section 5.2 – Evaluate and Graph Polynomial Functions

Goals: #1 - I can determine whether a function is polynomial and if so, state it's degree, type, and leading coefficient.

- #2 I can use direct substitution to evaluate a polynomial for the given value of x.
- #3 I can use synthetic substitution to evaluate a polynomial for the given value of x.
- #4 I can describe the end behavior (general shape) of the graph of a polynomial by looking at its equation.

Homework: Lesson 5.2 Worksheet

Warm Up: Simplify the expression.

1. $\frac{-14x^{-3}y^5}{35xy^3}$ 2. $(4a^5b^{-2})^{-3}$

3.
$$(2r^3s^3)(r^{-7}s^5)$$
 2. $\frac{xy^{-1}}{x^2y} \cdot \frac{7x^3}{y^{-4}}$

Review:

Recall that a ______ is a number, variable, or a product of numbers and variables. Monomials ______ have a _____ or _____ exponent. Examples:

Examples:

Name:	Hour:	Date:
Notes:		
A	is a function of	the form:
f(x)	$= a_n x^n + a_{n-1} x^{n-1} + \dots + a_n$	$a_1x + a_0$
(exponents are	numbers and the coefficient	s are all numbers).
For this function,	is the	
is the	, andis the	

A polynomial function is in _____

if its terms are written in descending order of exponents form left to right.

Common Polynomial Functions				
Degree	Туре	Standard Form	Example	
		$f(x) = a_0$		
		$f(x) = a_1 x + a_0$		
		$f(x) = a_2 x^2 + a_1 x + a_0$		
		$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$		
		$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$		

Example #1: Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1.
$$h(x) = x^4 - \frac{1}{4}x^2 + 3$$

2. $f(x) = 5x^2 + 3x^{-1} - x$

|--|

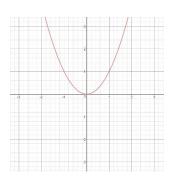
Example #2: Use <u>direct substitution</u> to evaluate the polynomial function for the given value of *x*.

1.
$$f(x) = 2x^4 - 5x^3 - 4x + 8$$
; $x = 2$
2. $g(x) = x^4 + 2x^3 - 3x^2 - 7$; $x = -2$

You practice: Use <u>direct substitution</u> to evaluate the polynomial function for the given value of *x*.

1.
$$h(x) = x^3 - 5x^2 + 6x + 1$$
; $x = 4$
2. $g(x) = -3x^3 + x^2 - 12x - 5$; $x = 2$

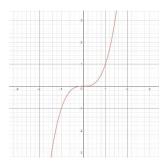
Example #3: Use <u>synthetic substitution</u> to evaluate the polynomial function for the given value of *x*.


1. $f(x) = 2x^4 - 5x^3 - 4x + 8$; x = 22. $g(x) = x^4 + 2x^3 - 3x^2 - 7$; x = -2

You practice: Use <u>synthetic substitution</u> to evaluate the polynomial function for the given value of *x*.

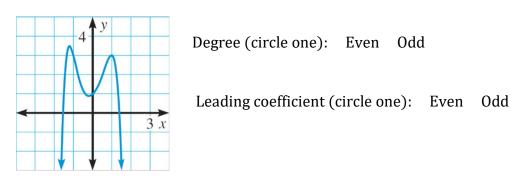
1.
$$h(x) = x^3 - 5x^2 + 6x + 1$$
; $x = 4$
2. $g(x) = -3x^3 + x^2 - 12x - 5$; $x = 2$

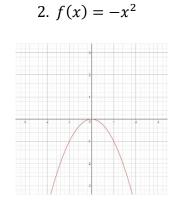
Exploration #1: Work with a partner and fill in the following blanks.


1.
$$f(x) = x^2$$

Degree:

Leading coefficient:

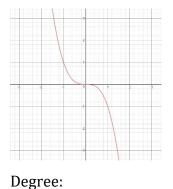




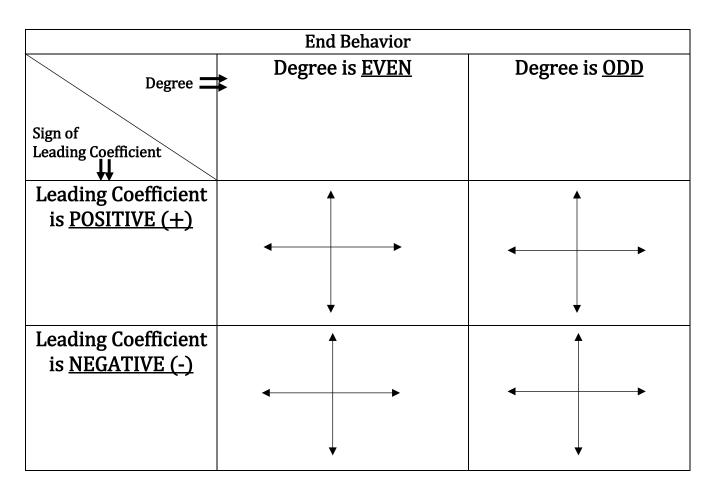
Leading coefficient:

Leading coefficient:

5. Describe the degree (even or odd) and leading coefficient (positive or negative) of the polynomial function whose graph is shown.



Degree:


Leading coefficient:

4. $f(x) = -x^3$

|--|

Example #1: Describe the end behavior of the graph of the polynomial function by completing the statement. Sketch a general picture of the graph to help.

1. $f(x) = 3x^{10} - 16x$	2. $f(x) = -2x^3 + 7x - 4$
$f(x) \rightarrow __$ as $x \rightarrow -\infty$	$f(x) \rightarrow \underline{\qquad} $ as $x \rightarrow -\infty$
$f(x) \rightarrow ___$ as $x \rightarrow +\infty$	$f(x) \rightarrow __$ as $x \rightarrow +\infty$

You practice: Describe the end behavior of the graph of the polynomial function by completing the statement. Sketch a general picture of the graph to help.

1. $f(x) = x^7 + 3x^4 - x^2$ $f(x) \rightarrow \underline{\qquad} as \ x \rightarrow -\infty$ $f(x) \rightarrow \underline{\qquad} as \ x \rightarrow -\infty$ $f(x) \rightarrow \underline{\qquad} as \ x \rightarrow -\infty$