NOTES: Section 4.7 – Complete the Square

Goals: #1 - I can solve quadratics by completing the square.

#2 - I can change a quadratic from standard form to vertex form.

Homework: Lesson 4.7 Worksheet

Warm Up:

1. Solve $3x^2 + 8 = -76$

Write the expression as a complex number in standard form.

2.
$$(5-8i) - (-9+3i)$$
 3. $\frac{5-8i}{-9+3i}$

4.
$$-2 + 55i^{66}$$
 5. $-10 + 2i^{45}$

Exploration #1: Work with a partner.

- 1. Write some examples of a *perfect square trinomial*.
- 2. What value of *c* would make the following a perfect square trinomial? $x^2 + 14x + c$

Name:	Hour:	Date:

Example #1: Solve the quadratic equation by finding square roots.

1. $x^2 - 8x + 16 = 25$ 2. $x^2 - 10x + 25 = 1$

You practice: Solve the quadratic equation by finding square roots.

3. $x^2 + 6x + 9 = 36$ 4. $x^2 - 24x + 144 = 100$

Example #2: Find the value of *c* that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.

1.
$$x^2 + 16x + c$$
 2. $x^2 + 14x + c$

You practice: Find the value of *c* that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.

3. $x^2 + 22x + c$ 4. $x^2 - 9x + c$

Name:	Hour:	Date:
Notes:		
We can use this idea to make quadrati	ic expression a	
This process is called		
To complete the square for the expression x^2 +	- <i>bx</i> , add	

Example #3: Solve the equation by completing the square.

1. $x^2 - 12x + 4 = 0$ 2.	$2x^{2} +$	8x + 2	14 =	0
---------------------------	------------	--------	------	---

You practice: Solve the equation by completing the square.

3. $x^2 - 10x + 8 = 0$

4. $3x^2 + 12x - 18 = 0$

Notes:

Recall the vertex form of a quadratic function is ______.

We use _______ to write any quadratic function in vertex form.

Name:	Hour:	Date:
	110ui .	Dute:

Example #4: Write the quadratic function in vertex form. Then identify the vertex.

1.
$$y = x^2 - 10x + 22$$

2. $y = x^2 - 8x + 17$

You practice: Write the quadratic function in vertex form. Then identify the vertex.

3.
$$y = x^2 + 6x + 3$$

4. $y = x^2 - 4x - 4$

Example #5: The height y (in feet) of a baseball t seconds after it is hit is given by this function: $y = -16t^2 + 96t + 3$. Find the maximum height of the baseball.