NOTES: Section 4.2 – Graph Quadratic Functions in Vertex or Intercept Form

Goals: #1 - I can graph a quadratic function from vertex form.

- #2 I can graph a quadratic function from intercept form.
- #3 I can take a quadratic in either intercept or vertex form, and rewrite it in standard form.

Homework: Lesson 4.2 Worksheet

Warm Up: Identify the graph's axis of symmetry, vertex, *y*-intercept, whether the graph opens up or down, and its maximum/minimum value. Then graph the function by completing the table.

1.
$$y = -\frac{3}{4}x^2 - 4x - 1$$

AOS: _____

vertex: _____

y-int: _____

opens: _____

max./min. value: _____

х			
у			

Exploration #1: Graph $-4(x-2)^2 + 4$ using a table of values.

χ	y

- 1. What is the vertex?
- 2. What do you notice about your graph?

Name: Date: Date:	Name:	Hour:	Date:
-------------------	-------	-------	-------

Notes:

We can use the following properties to graph *any* quadratic function in ______ form.

$$y = a(x - h)^2 + k$$

- The graph opens ______ if _____ and opens _____ if _____.
- The graph gets ______ if _____ and _____ if _____.
- The ______ is _____.
- The ______ is ____.

Example #1: Graph $y = -\frac{1}{4}(x+2)^2 + 5$

AOS: _____

Vertex: _____

y-int: _____

Opens: _____

Max./Min. Value: _____

х			
у			

Work:

Example #2: Tell whether the function $y = (x - 2)^2 + 3$ has a maximum or minimum value. Then find its value.

Name:	Hour.	Date:
Name	110u1.	Datc

Exploration #2: Graph -2(x + 3)(x + 5) using a table of values.

- 1. What are the *x*-intercepts?
- 2. What is the AOS?
- 3. What do you notice about your graph?

Notes:

We can use the following properties to graph *any* quadratic function in ______ form.

$$y = a(x - p)(x - q)$$

- The graph opens _____ if ____ and opens _____ if ____.
- The graph gets ______ if _____ and _____ if _____.
- The ______ are _____.
- The ______ is halfway between _____ and _____.

It has the equation_____.

Forms of Quadratic Functions				
Standard Form				
Vertex Form				
Intercept Form				

Hour: _____ Date: ____

Example #3: Graph y = 2(x + 3)(x - 1).

AOS: _____

Vertex: _____

Opens: _____

Max./Min. Value: _____

х			
у			

Work:

Example #4: Tell whether the function y = -4(x+3)(x+7) has a maximum or minimum value. Then find its value.

Example #5: Write the quadratic function in standard form.

1.
$$y = -2(x+5)(x-8)$$

2.
$$y = 4(x-1)^2 + 9$$

3.
$$y = 2(x+5)(x+4)$$

2.
$$y = -(x+2)^2 + 4$$