\qquad
\qquad

NOTES: Section 3.2 - Solve Linear Systems Algebraically

Goals: \#1 - I can solve a system of linear equations using substitution.
\#2 - I can solve a system of linear equations using elimination.

\#3 - I can determine whether a system of equations has one, infinitely many, or no solutions when using substitution or elimination.
\#4 - I can determine one method, substitution or elimination, works more conveniently than the other.

Homework: Lesson 3.2 Worksheet

Warm Up:

Solve the system of equations graphically. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

1. $3 x+2 y=12$

$$
x-y=-1
$$

Solution: \qquad
Classify: \qquad
2. $4 x+2 y=-8$

$$
-2 x-y=6
$$

Solution: \qquad
Classify: \qquad

Notes:

There are two algebraic methods for solving linear systems:
\qquad and \qquad
\qquad
\qquad Date: \qquad

Example \#1: Solve the system using the substitution method.
a. $2 x+5 y=-5$
b. $x+4 y=1$
$x+3 y=3$

$$
3 x+2 y=-12
$$

Example \#2: Solve the system using the elimination method.
a. $3 x-7 y=10$
$6 x-8 y=8$
b. $4 x-2 y=-16$
$-3 x+4 y=12$

Notes:

We can use either method when solving systems algebraically. In general,
\qquad is convenient when one of the variables has a
coefficient of \qquad or \qquad .

- \qquad is convenient when neithervariable has a coefficient of \qquad or \qquad .
\qquad
\qquad Date: \qquad

Review:

We know that when we solve linear systems, we could have \qquad solution, \qquad solution, or \qquad solutions.

What does this look like algebraically?

Example \#3: Solve the linear system.
a. $x-2 y=4$
b. $4 x-10 y=8$
$3 x-6 y=8$

$$
-14 x+35 y=-28
$$

Name: \qquad Hour: \qquad Date: \qquad

Example \#4: You need a 15\% acid solution for your science experiment, but there's only 10% solution and 30% solution left. You decide to mix the 10% solution with the 30% solution to make your own 15\% acid solution. You need a total of 10 liters of 15% solution for your science experiment. How many liters of the 10% solution and the 30% solution should you use?

