NOTES: Section 3.2 – Solve Linear Systems Algebraically

Goals: #1 - I can solve a system of linear equations using substitution.

- #2 I can solve a system of linear equations using elimination.
- #3 I can determine whether a system of equations has one, infinitely many, or no solutions when using substitution or elimination.
- #4 I can determine one method, substitution or elimination, works more conveniently than the other.

Homework: Lesson 3.2 Worksheet

Warm Up:

Solve the system of equations graphically. Then classify the system as *consistent and* independent, consistent and dependent, or inconsistent.

- 1. 3x + 2y = 12
 - x y = -1

-2x - y = 6

2. 4x + 2y = -8

Solution:	Solution:
Classify:	Classify:

Notes:

There are two algebraic methods for solving linear systems:

and

Example #1: Solve the system using the <u>substitution method</u>.

a. 2x + 5y = -5b. x + 4y = 13x + 2y = -12x + 3y = 3

Example #2: Solve the system using the <u>elimination method</u>.

a.	3x - 7y = 10	b. $4x - 2y = -16$
	6x - 8y = 8	-3x + 4y = 12

Notes:

We can use either method when solving systems algebraically. In general,

- _____ is convenient when one of the variables has a • coefficient of _____ or _____.
- ______ is convenient when *neither* variable has a •

coefficient of _____ or _____.

Name:	Hour:	Date:	
Review:			
We know that when we solve linear sy	stems, we could have	solution, s	solution,
or	solutions.		

What does this look like algebraically?

ONE SOLUTION NO SOLUTION	INFINITELY MANY SOLUTIONS
--------------------------	---------------------------

Example #3: Solve the linear system.

a. x - 2y = 4 3x - 6y = 8b. 4x - 10y = 8-14x + 35y = -28

Name:	Hour:	Date:
	110ui ·	Dute:

Example #4: You need a 15% acid solution for your science experiment, but there's only 10% solution and 30% solution left. You decide to mix the 10% solution with the 30% solution to make your own 15% acid solution. You need a total of 10 liters of 15% solution for your science experiment. How many liters of the 10% solution and the 30% solution should you use?