NOTES: Section 2.2 - Find Slope and Rate of Change

Goals: #1 - I can find the slope of the line passing through 2 points and compare slopes to determine which line is steeper.

#2 - I can use slopes to determine if lines are parallel, perpendicular, or neither.

Homework: Lesson 2.2 Worksheet

Warm Up:

1. Identify the domain and range of the given relation. Then tell whether the relation is a function.

Domain: $\frac{\{8, -3, 0, 5\}}{}$

Range: $\{-7,0,3\}$

Function?: 165

2. Tell whether the function $f(x) = -x^2 + 3$ is linear. Then evaluate the function for x = -2. NO

$$f(-z) = -(-z)^{2} + 3$$

= -(4)+3
= $[-1]$

Exploration #1: Work with a partner.

1. Plot the following points:

Point A:
$$(-2, 3)$$

Point C:
$$(-4, -1)$$

Point D:
$$(4, -2)$$

Notes:

Between any 2 points on a coordinate grid, there is exactly one Inc that can be drawn. is a number we use to describe SHLYNUS and direction of a line.

We use the variable $\underline{\gamma \gamma}$ for slope.

The equation we use to calculate slope is:

$$m = \frac{150}{100} = \frac{42 - 4}{22 - 2}$$

$$= \frac{1}{3} = \frac{5 - 4}{3 - 0} = \frac{1}{3}$$

Example #1: Without graphing, tell whether the line through the given points rises, falls, is horizontal, or is vertical.

1.
$$(-6,-2),(1,3)$$

 $M = \frac{3-(-2)}{1-(-6)} = \frac{5}{7}$
 $M = \frac{7-(-1)}{7-7} = \frac{3}{0}$
 $M = \frac{7-(-1)}{7-7} = \frac{3}{0}$
 $M = \frac{7-(-1)}{7-3-1} = \frac{10}{0}$
 $M = \frac{7-(-1)}{7-3-1} = \frac{10}{0}$

3.
$$(-3,2)$$
, $(1,0)$ - 4

2. (2,-1), (2,2)

Example #2: Ms. Hentrich walked up a hill that was 15 feet long and 3 feet tall. What is the slope of this hill?

D'

Exploration #2: Work with a partner.

- 1. Draw two lines that are parallel. What do you notice about the slopes of these lines?
- 2. Draw two lines that are *perpendicular*. What do you notice about the *slopes* of these lines?
- 3. Line A and Line B are perpendicular lines. Find the slope of the each line:

Line A:

Line B:

What do you notice?

opposite reciprocal

Notes:

Lines are parallel if and only if they have the \underline{SMM} slope.

Picture:

Lines are perpendicular if and only if their slopes are Opposite recipio CW of each other.

Picture:

Name:		

Hour: _____ Date: ___

Example #3: Tell whether the lines are parallel, perpendicular, or neither.

1. Line 1: through (-3, -1) and (2, 5)

Line 2: through (3, -4) and (-3, 1)

2. Line 1: through
$$(-4, -2)$$
 and $(1, 7)$

Line 2: through (-2, -4) and (3, 5)

Line 1.
$$m = \frac{5-(-1)}{2-(-3)} = \frac{6}{5}$$

Line 1:
$$m = \frac{7 - (-7)}{1 - (-4)} = \frac{9}{5}$$

Line 7:
$$m = \frac{5 - (-4)}{3 - (-2)} = \frac{9}{5}$$

parallel

CHALLENGE: Tell whether the lines are parallel, perpendicular, or neither.

1. Line 1: 2y = x - 4

Line 2: y + 2x = 3

2y = x - 4 y + 2x = 3

$$Y = \frac{1}{2}x - 2$$
 $Y = -2x + 3$

Opposite reciproca SIODES

perpendicular