\qquad
\qquad Date: \qquad

NOTES: Section 2.2 - Find Slope and Rate of Change

Goals: \#1 - I can find the slope of the line passing through 2 points and compare slopes to determine which line is steeper.
\#2 - I can use slopes to determine if lines are parallel, perpendicular, or neither.

Homework: Lesson 2.2 Worksheet

Warm Up:

1. Identify the domain and range of the given relation. Then tell whether the relation is a function.

Domain: \qquad

Range: \qquad

Function?: \qquad
2. Tell whether the function $f(x)=-x^{2}+3$ is linear. Then evaluate the function for $x=-2$.

Exploration \#1: Work with a partner.

1. Plot the following points:

Point A: $(-2,3)$
Point B: $(5,6)$
Point C: $(-4,-1)$
Point D: $(4,-2)$
Point E: $(0,3)$

\qquad
\qquad Date: \qquad

Notes:

Between any 2 points on a coordinate grid, there is exactly one \qquad that can be drawn.
\qquad is a number we use to describe \qquad and \qquad of a line.

We use the variable \qquad for slope.

The equation we use to calculate slope is:

Example \#1: Without graphing, tell whether the line through the given points rises, falls, is horizontal, or is vertical.

1. $(-6,-2),(1,3)$
2. $(2,-1),(2,2)$
3. $(-3,2),(1,-4)$

Example \#2: Ms. Hentrich walked up a hill that was 15 feet long and 3 feet tall. What is the slope of this hill?
\qquad
\qquad Date: \qquad

Exploration \#2: Work with a partner.

1. Draw two lines that are parallel. What do you notice about the slopes of these lines?
2. Draw two lines that are perpendicular. What do you notice about the slopes of these lines?
3. Line A and Line B are perpendicular lines. Find the slope of the each line: Line A:

Line B:

What do you notice?

Notes:

Lines are parallel if and only if they have the \qquad slope.

Picture:

Lines are perpendicular if and only if their slopes are \qquad of each other.

Picture:
\qquad
\qquad Date: \qquad

Example \#3: Tell whether the lines are parallel, perpendicular, or neither.

1. Line 1 : through $(-3,-1)$ and $(2,5)$

Line 2 : through $(3,-4)$ and $(-3,1)$
2. Line 1 : through $(-4,-2)$ and $(1,7)$

Line 2: through $(-2,-4)$ and $(3,5)$

CHALLENGE: Tell whether the lines are parallel, perpendicular, or neither.

1. Line 1: $2 y=x-4$

Line 2: $y+2 x=3$

