NOTES: Factoring Review

Goals: #1 - I can factor monomial expressions.

#2 - I can factor binomial expressions.

#3 - I can factor trinomial expressions.

Homework: Factoring Review Worksheet

Warm Up:

1. Graph the function. Identify the graph's asymptotes and the function's domain and range.

a.
$$y = \frac{-1}{x+4} + 3$$

asymptotes:

asymptotes: _____

domain:

domain:

range: _____

range: _____

Exploration #1: Work with a partner and factor the following expressions.

1.
$$x^2 - 12x + 20$$

2.
$$5x^2 - 8x - 4$$

3.
$$x^2 - 16$$

Name:	Hour:	Date:
Notes:		
A	expression is a	term:
То	monimials, we write them as facto	or
Example: $45x^3$		
Practice: Factor the monon	nial expressions.	
1. $18x^2$	2. $50x^7$	3. 4 <i>x</i>
Notes:		
	expression has exactly	terms:
m.		
Example: $8x^2 - 2x$	binomials, we first check if we can	factor out a
Some binomials have	factoring patterns	we need to look for!
•		_:
Example: $x^2 - 16$		
•		_:
Example: $x^3 - 64$		

Name:	Hour:

_____ Date: _____

Practice: Factor the binomial expressions.

1.
$$14x^3 - 21x^2$$

2.
$$x^4 - 4x^2$$

3.
$$2x^5 + 54x^2$$

Notes:

A ______ expression has exactly _____ terms:

To ______ trinomails, we first check if we can factor out a _____.

Then, we use the _____ method to factor.

Example: $2x^2 + 5x + 2$

Practice: Factor the trinomial expressions.

1.
$$x^2 - 9x + 20$$

2.
$$12x^2 - 28x - 24$$
 3. $3x^2 + 10x - 8$

3.
$$3x^2 + 10x - 8$$