\qquad
\qquad Date: \qquad

NOTES: Sections 4.1-4.2 - The Coordinate Plane and Graphing Linear Equations

Goals: \#1 - I can plot points in a coordinate plane.
\#2 - I can graph a linear equation using a table of values.

Homework: Linear Equation Worksheet

Exploration \#1: Work with a partner.

1. Plot the following points:

Point A: $(-2,3)$
Point B: $(5,6)$
Point C: $(-4,-1)$
Point D: $(4,-2)$
Point E: $(0,3)$

Notes:

A \qquad is formed by two real number lines that
intersect at the \qquad .

The horizontal axis is called the \qquad .

The vertical axis is called the \qquad .

The coordinate plane is divided into four regions called \qquad .

FILL IN:

\qquad
\qquad Date: \qquad

Each point in a coordinate plane corresponds to an \qquad .

The \qquad -coordinate tells us how far to move \qquad or \qquad .

The \qquad -coordinate tells us how far to move \qquad or \qquad .

Example \#1: Write the ordered pairs that correspond to points A, B, C, and D. What quadrants are these points in?

a. A :
b. B :
c. C :
d. D :

Exploration \#2: Work with a partner.

1. Plot the following points:

Point A: $(-5,6)$
Point B: $(1,-3)$
Point C: $(3,-6)$
Point D: $(-3,3)$
Point E: $(-1,0)$
What do these points form?

\qquad
\qquad Date: \qquad

Notes:

A \qquad is an equation that can be written in the form:

$$
A x+B y=C
$$

An equation that is written in \qquad form is when we solve the equation for \qquad .

A \qquad of an equation is an \qquad (x, y) that makes the equation true. (Just like when we checked our solutions when we solved equations!)

Example \#2: Determine whether the ordered pair is a solution of $x+2 y=5$.
a. $(1,2)$
b. $(7,-3)$

Example \#3: Write the equation $6 x+3 y=18$ in function form.

You practice:

1. Determine whether the ordered pair is a solution of $2 x+y=1$
a. $(-3,7)$
b. $\left(\frac{5}{2},-6\right)$
2. Write the equation $4 y-3 x=-28$ in function form.
\qquad

Example \#3: Use a table of values to graph $4 y-2 x=8$.

x	y

You practice: Use a table of values to graph $y=3 x-2$.

x	y

CHALLENGE: How could you graph this line a different way?

