NOTES: Section 9.1 – Square Roots

20 ... Goals: #1 - I can evaluate and approximate square roots. Homework: Section 9.1 Worksheet

Exploration #1: Evaluate the following expressions.

- 1. $3^2 =$ 2. $(-3)^2 =$ 4. $(-5)^2 =$
- 3. $5^2 =$

What is the inverse operation of squaring a number?

Notes:

The inverse operation of squaring a number is finding a ______ of a number.

Square roots are writen with a _____ symbol: $\sqrt{}$

The number underneadth the radical symbol is called the _____.

 $\sqrt{16}$

Example #1: Evaluate the expression.

2. $-\sqrt{64}$ 3. $\pm \sqrt{64}$ 1. $\sqrt{64}$ 4. $\sqrt{-64}$

You practice: Evaluate the expression.

2. $-\sqrt{25}$ 4. $\sqrt{16}$ 1. $\pm \sqrt{100}$ 3. $\sqrt{36}$

Name:		Hour:	Date: _	
Notes:				
A	is a number n	nade by	a	number.
Perfect Squares:				
However, whe	n we take the	of a nu	mber that is	a
	, we		the answer.	
approximate t	o the nearest hunderdth.	_		_
1. $-\sqrt{49}$	2. $\sqrt{3}$	3. √3	6	4. $-\sqrt{8}$
Evample #3: F	valuate $\sqrt{h^2 - 4ac}$ when $a =$	1 h = -2 and $c =$	· _3	
Example #3. L	valuate VD +ue when u =	1, <i>b</i> — 2, and c —		
You practice: E approximate t	valuate the expression. Give the nearest hunderdth.	the exact value if p	oossible. Otherv	wise,

1. $\sqrt{100}$ 2. $-\sqrt{5}$ 3. $\sqrt{23}$ 4. $-\sqrt{81}$

5. Evaluate
$$\sqrt{b^2 - 4ac}$$
 when $a = -1$, $b = 8$, and $c = 20$

Name:	Hour:	Date:

Example #4: Evaluate the following expressions. Round the results to the nearest hundredth.

1. 6 $\pm \sqrt{5}$	2. $4 \pm \sqrt{8}$	3. $\frac{2 \pm \sqrt{3}}{3}$	$4. \frac{2 \pm 3\sqrt{6}}{4}$

You practice: Evaluate the following expressions. Round the results to the nearest hundredth.

1. $8 \pm \sqrt{3}$ 2. $-6 \pm 4\sqrt{2}$ 3. $\frac{7 \pm 3\sqrt{2}}{-1}$ 4. $\frac{1 \pm 2\sqrt{3}}{4}$