\qquad
\qquad
\qquad

NOTES: Section 9.1 - Square Roots

Goals: \#1 - I can evaluate and approximate square roots. 0

Homework: Section 9.1 Worksheet

Exploration \#1: Evaluate the following expressions.

1. $3^{2}=$
2. $(-3)^{2}=$
3. $5^{2}=$
4. $(-5)^{2}=$

What is the inverse operation of squaring a number?

Notes:

The inverse operation of squaring a number is finding a \qquad of a number.

Square roots are writen with a \qquad symbol: $\sqrt{ }$

The number underneadth the radical symbol is called the \qquad .

$$
\sqrt{16}
$$

Example \#1: Evaluate the expression.

1. $\sqrt{64}$
2. $-\sqrt{64}$
3. $\pm \sqrt{64}$
4. $\sqrt{-64}$

You practice: Evaluate the expression.

1. $\pm \sqrt{100}$
2. $-\sqrt{25}$
3. $\sqrt{36}$
4. $\sqrt{16}$
\qquad
\qquad Date: \qquad

Notes:

A \qquad is a number made by \qquad a \qquad number.

Perfect Squares:												

However, when we take the \qquad of a number that is \qquad a
\qquad we \qquad the answer.

Example \#2: Evaluate the expression. Give the exact value if possible. Otherwise, approximate to the nearest hunderdth.

1. $-\sqrt{49}$
2. $\sqrt{3}$
3. $\sqrt{36}$
4. $-\sqrt{8}$

Example \#3: Evaluate $\sqrt{b^{2}-4 a c}$ when $a=1, b=-2$, and $c=-3$

You practice: Evaluate the expression. Give the exact value if possible. Otherwise, approximate to the nearest hunderdth.

1. $\sqrt{100}$
2. $-\sqrt{5}$
3. $\sqrt{23}$
4. $-\sqrt{81}$
5. Evaluate $\sqrt{b^{2}-4 a c}$ when $a=-1, b=8$, and $c=20$

Name: \qquad Hour: \qquad Date: \qquad

Example \#4: Evaluate the following expressions. Round the results to the nearest hundredth.

1. $6 \pm \sqrt{5}$
2. $4 \pm \sqrt{8}$
3. $\frac{2 \pm \sqrt{3}}{3}$
4. $\frac{2 \pm 3 \sqrt{6}}{4}$

You practice: Evaluate the following expressions. Round the results to the nearest hundredth.

1. $8 \pm \sqrt{3}$
2. $-6 \pm 4 \sqrt{2}$
3. $\frac{7 \pm 3 \sqrt{2}}{-1}$
4. $\frac{1 \pm 2 \sqrt{3}}{4}$
