NOTES: Section 8.2 - Graph Simple Rational Functions

Goals: #1 - I can graph rational functions of the form $y = \frac{a}{x-h} + k$

#2 - I can graph rational functions of the form $y = \frac{ax + b}{cx + d}$

Homework: Lesson 8.2 Day 1 & Day 2 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. Complete the table of vaules to graph the following function.

$$y = \frac{1}{x}$$

-	x	
x	y	
-3	-0.3	
-2	-0.5	
-1	-1	
0	_	
1	1	
2	0.5	
3	0.3	

Notes:

function is a function in the form: $f(x) = \frac{\mathbf{a}}{x}$

The shape of this graph is called a MYPLY 1010 which consists of two Symmetrical branches.

Domain: $\mathbb{R} \times \mathbb{R}$ Range: $\mathbb{R} \times \mathbb{R}$

Example #1: Graph the function. Then state the domain, range, and asymptotes.

asymptotes: X = 0 Y = 0 domain: $X \neq 0$

range: \sqrt{L} $\sqrt{\pm 0}$

asymptotes: X = 0 Y = 0 domain: $X \neq 0$ range: $X \neq 0$

Exploration #2: Work with a partner and answer the following questions.

- 1. Suppose you had the function $y = \frac{1}{x}$
 - a. Describe the transformation: $y = \frac{1}{x} + 1$

shift UP 1

b. How would this shift our horizontal asymptote?

y=0 > y=1

c. Describe the transformation: $y = \frac{1}{x+1}$

shift left 1

d. How would this shift our vertical asymptote?

x=0 - x=-1

Name:	Hour:	Date:
Name.	110u1	Date.

Notes:

To graph a $y = \frac{a}{x-h} + k$

Draw the asymptotes: X = h and Y = k

Plot points to the 18ft and right of the vertical asymptote.

Draw the two Vranchus of the hyperbola.

Example #2: Graph the function. Then state the domain, range, and asymptotes.

asymptotes: X=-3 y=2 domain: $X \neq -3$

range: IR, 4 # Z

asymptotes: X = Z Y = 1 domain: $X \neq Z$

range: 12, 471

Exploration #3: Work with a partner and answer the following questions.

1. The equation of each hyperbola is shown. Find the vertical and horizontal asymptotes.

$$a. \quad y = \frac{x+1}{x-1}$$

b.
$$y = \frac{x-2}{x+1}$$

VA:
$$\chi = \frac{4}{1}$$

$$c. y = \frac{-x}{x+2}$$

Notes:

To graph a $y = \frac{ax + b}{cx + d}$ function of the form: $y = \frac{ax + b}{cx + d}$

Draw the asymptotes: $X = \frac{d}{C}$ and $Y = \frac{d}{C}$

Draw the two branches of the hyperbola.

Example #2: Find the vertical and horizontal asymptote of the grpah of the function.

1.
$$y = \frac{4}{x} + 3$$

VA:
$$X = 0$$

HA: $y = 3$

2.
$$y = \sqrt{\frac{2x+1}{4x-2}}$$

VA:
$$X = \frac{1}{2}$$
 VA: $X = -1$ HA: $y = \frac{3}{2}$

3.
$$y = \frac{-3x + 2}{-x - 1}$$

Example #3: Graph the function. Then state the domain, range, and asymptotes.

1.
$$y = \frac{4x-2}{x-1}$$

domain: $\mathbb{R}_+ \times 7$ range: 12, 4 + 4

$$2. \ y = \frac{-2x+1}{-x-2}$$

HA. 4-2 asymptotes: X=-2

domain: 12, X 7-2

range: IR y 7 Z