## **NOTES: Section 8.2 – Graph Simple Rational Functions**

Goals: #1 - I can graph rational functions of the form  $y = \frac{a}{x-h} + k$ 

#2 - I can graph rational functions of the form  $y = \frac{ax + b}{cx + d}$ 

Homework: Lesson 8.2 Worksheet







**Exploration #1:** Work with a partner and answer the following questions.

1. Complete the table of vaules to graph the following function.

$$y = \frac{1}{x}$$

|    | λ |
|----|---|
| x  | y |
| -3 |   |
| -2 |   |
| -1 |   |
| 0  |   |
| 1  |   |
| 2  |   |
| 3  |   |



## Notes:

A \_\_\_\_\_\_ function is a function in the form:  $f(x) = \frac{a}{x}$ 

The shape of this graph is called a \_\_\_\_\_\_ branches.

Domain:\_\_\_\_\_ Range: \_\_\_\_\_



**Example #1:** Graph the function. Then state the domain, range, and asymptotes.

1. 
$$y = \frac{4}{x}$$



2. 
$$y = \frac{3}{x}$$

|   | - ' | У |   |
|---|-----|---|---|
|   |     |   |   |
| + | 1-  |   | - |
|   |     | i | X |
|   |     |   |   |
|   | _   |   | - |

asymptotes:

domain: \_\_\_\_\_

range: \_\_\_\_\_

asymptotes: \_\_\_\_\_

domain: \_\_\_\_\_

range: \_\_\_\_\_

**Exploration #2:** Work with a partner and answer the following questions.

- 1. Suppose you had the function  $y = \frac{1}{x}$ 
  - a. Describe the transformation:  $y = \frac{1}{x} + 1$
  - b. How would this shift our horizontal asymptote?
  - c. Describe the transformation:  $y = \frac{1}{x+1}$
  - d. How would this shift our vertical asymptote?

## Notes:

To graph a \_\_\_\_\_\_ function of the form:  $y = \frac{a}{x-h} + k$ 

Draw the asymptotes: \_\_\_\_\_\_ and \_\_\_\_\_

Plot points to the \_\_\_\_\_ and \_\_\_\_ of the vertical asymptote. ←

Draw the two \_\_\_\_\_ of the \_\_\_\_



**Example #2:** Graph the function. Then state the domain, range, and asymptotes.

1. 
$$y = \frac{-6}{x+3} + 2$$



2.  $y = \frac{3}{x-2} + 1$ 



asymptotes: \_\_\_\_\_

domain: \_\_\_\_\_

range: \_\_\_\_\_

asymptotes:

domain: \_\_\_\_\_

range: \_\_\_\_\_

**Exploration #3:** Work with a partner and answer the following questions.

1. The equation of each hyperbola is shown. Find the vertical and horizontal asymptotes.

$$a. \quad y = \frac{x+1}{x-1}$$



VA:

HA:

b. 
$$y = \frac{x-2}{x+1}$$



VA:

HA: \_\_\_\_\_

c. 
$$y = \frac{-x}{x+2}$$



VA:

HA:

## Notes:

To graph a \_\_\_\_\_\_ function of the form:  $y = \frac{ax + b}{cx + d}$ 

Draw the asymptotes: \_\_\_\_\_\_ and \_\_\_\_\_.

Plot points to the \_\_\_\_\_ and \_\_\_\_ of the vertical asymptote.

Draw the two \_\_\_\_\_\_ of the \_\_\_\_\_.

**Example #3:** Find the vertical and horizontal asymptote of the grpah of the function.

1. 
$$y = \frac{4}{x} + 3$$

$$2. \ \ y = \frac{2x+1}{4x-2}$$

3. 
$$y = \frac{-3x+2}{-x-1}$$

VA: \_\_\_\_\_

VA: \_\_\_\_\_

VA: \_\_\_\_\_

HA: \_\_\_\_\_

HA: \_\_\_\_\_

HA: \_\_\_\_\_

**Example #4:** Graph the function. Then state the domain, range, and asymptotes.

1. 
$$y = \frac{4x-2}{x-1}$$



asymptotes: \_\_\_\_\_

domain: \_\_\_\_\_

range: \_\_\_\_\_

2.  $y = \frac{-2x+1}{-x-2}$ 



asymptotes:

domain: \_\_\_\_\_

range: \_\_\_\_\_