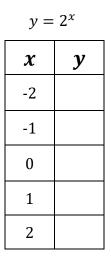
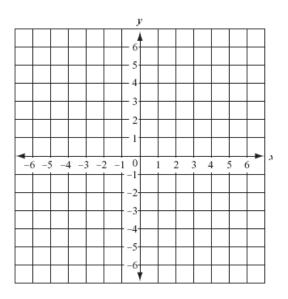
NOTES: Section 7.1 – Graph Exponential Growth Functions

Goals: #1 - I can graph exponential growth functions and state the domain and range.

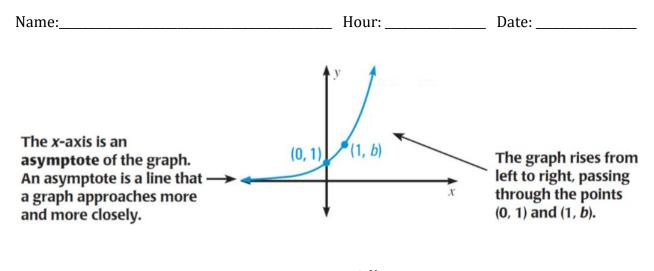

#2 - I can use an exponential growth model in a real life situation.


#3 - I can use an exponential growth model in a real life situation involving compound interest.

Homework: Lesson 7.1 Worksheet

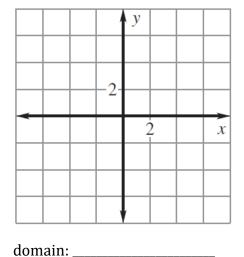
Exploration #1: Work with a partner and answer the following questions.

1. Complete the table of vaules to graph the following function.

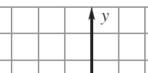


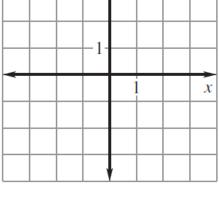
Notes:

An ______ function has the form:


where $a \neq 0$ and the base *b* is a positive number other than 1.

If _____, then the exponential function is an _____

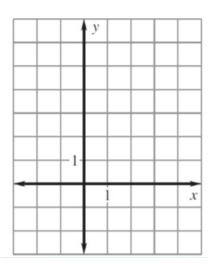



 $y = a \cdot b^x$

Example #1: Graph the function. Then state the domain and range.

range:_____

domain: ______ range: _____

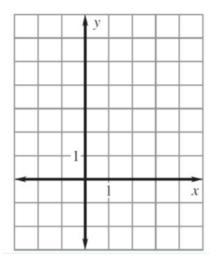

Exploration #1: Work with a partner and answer the following questions.

- 1. What transformation would happen if we added *k* to $y = a \cdot b^x + k$
- 2. What transformation would happen if we subtracted *h* to $y = a \cdot b^{x-h}$

Name:	Hour:	Date:
Notes:		
To graph a function of the form $y = a \cdot b^{x-h} + b^{x-h}$	k, begin by sketching	the graph of
Then translate the graph	by	_units and
by u	nits.	

Example #2: Graph the function. Then state the domain and range.

1.
$$y = 4 \cdot 2^{x-1} - 3$$



domain: _____

range: _____

You practice: Graph the function. Then state the domain and range.

1.
$$y = 2 \cdot 3^{x-2} + 2$$

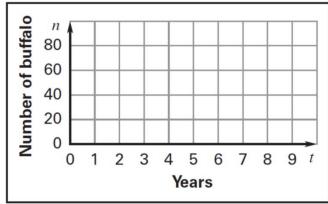
domain: _____

range: _____

Name:	Hour:	Date:
Notes:		
When a real-life quantity	by a fixed	_ each year (or other

time period), the amount *y* of the quantity after *t* years can be modeled by the equation

$$y = a(1+r)^t$$


Example #3: Use the model to identify the intial amount, the growth factor, and the annual percent increase.

1.
$$y = 2500(1.50)^t$$

2. $y = 0.42(2.47)^t$

Example #3: In the last 12 years, an initial population of 38 buffalo in a state park grew by about 7% per year.

- 1. Write an exponential growth model giving the number *n* of buffalo after *t* years.
- 2. About how many buffalo were in the park after 7 years?

3. Graph the model. Use the graph to estimate the year when there were about 53 buffalo.

Name:	Hour:	Date:		
Notes:				
	functions are used in real-life	e situations involving		
Compound interest is interest paid on an intial investment, called the,				
and on previously earned interest.		,		

To represent ______ we use the equation:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Annually: Semi-annually: Quarterly: Monthly: Daily:

Example #4: You deposit \$2900 in an account that pays 3.5% annual interest. Find the balance after 1 year if the interest in compounded monthly and annually.

1. With interest compounded monthly, the balance after 1 year is:

2. With interest compounded annually, the balance after 1 year is: