\qquad
\qquad Date: \qquad

NOTES: Section 7.1-Graph Exponential Growth Functions

Goals: \#1 - I can graph exponential growth functions and state the domain and range.
\#2 - I can use an exponential growth model in a real life situation.
\#3 - I can use an exponential growth model in a real life situation involving compound interest.

Homework: Lesson 7.1 Worksheet

Exploration \#1: Work with a partner and answer the following questions.

1. Complete the table of vaules to graph the following function.

$$
y=2^{x}
$$

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

Notes:

An \qquad function has the form: where $a \neq 0$ and the base b is a positive number other than 1 .

If \qquad then the exponential function is an \qquad .
\qquad Hour: \qquad Date: \qquad

The x-axis is an asymptote of the graph. An asymptote is a line that a graph approaches more and more closely.

$$
y=a \cdot b^{x}
$$

Example \#1: Graph the function. Then state the domain and range.

1. $y=\frac{1}{2} \cdot 4^{x}$
2. $y=-\left(\frac{5}{2}\right)^{x}$

domain: \qquad
range: \qquad

domain: \qquad
range: \qquad

Exploration \#1: Work with a partner and answer the following questions.

1. What transformation would happen if we added k to $y=a \cdot b^{x}+k$
2. What transformation would happen if we subtracted h to $y=a \cdot b^{x-h}$
\qquad
\qquad Date: \qquad

Notes:

To graph a function of the form $y=a \cdot b^{x-h}+k$, begin by sketching the graph of \qquad .

Then translate the graph \qquad by \qquad units and
\qquad by \qquad units.

Example \#2: Graph the function. Then state the domain and range.

1. $y=4 \cdot 2^{x-1}-3$

domain: \qquad
range: \qquad

You practice: Graph the function. Then state the domain and range.

1. $y=2 \cdot 3^{x-2}+2$

domain: \qquad
range: \qquad
\qquad
\qquad Date: \qquad

Notes:

When a real-life quantity \qquad by a fixed \qquad each year (or other time period), the amount y of the quantity after t years can be modeled by the equation

$$
y=a(1+r)^{t}
$$

Example \#3: Use the model to identify the intial amount, the growth factor, and the annual percent increase.

1. $y=2500(1.50)^{t}$
2. $y=0.42(2.47)^{t}$

Example \#3: In the last 12 years, an initial population of 38 buffalo in a state park grew by about 7\% per year.

1. Write an exponential growth model giving the number n of buffalo after t years.
2. About how many buffalo were in the park after 7 years?
3. Graph the model. Use the graph to estimate the year when there were about 53 buffalo.

\qquad
\qquad Date: \qquad

Notes:

\qquad functions are used in real-life situations involving
\qquad .

Compound interest is interest paid on an intial investment, called the \qquad , and on previously earned interest.

To represent \qquad we use the equation:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Annually:
Semi-annually:
Quarterly:
Monthly:
Daily:

Example \#4: You deposit \$2900 in an account that pays 3.5\% annual interest. Find the balance after 1 year if the interest in compounded monthly and annually.

1. With interest compounded monthly, the balance after 1 year is:
2. With interest compounded annually, the balance after 1 year is:
