NOTES: Section 6.1 – Evaluate nth Roots and Use Rational **Exponents**

Goals: #1 - I can interchange an expression between rational and radical notation, and evaluate the expression (using a calculator).

#2 - I can evaluate a rational or radical expression (without using a calculator).

#3 - I can solve equations using nth roots.

Homework: Lesson 6.1 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. Use a calculator to evaluate the following expressions. b. $(25)^{1/2} =$ a. $\sqrt{25} =$

c.
$$(a^{1/3})^3 =$$
 d. $(x^{1/4})^4 =$

e.
$$\sqrt[3]{64} =$$
 f. $(64)^{1/3} =$

Notes:

There are _____ properties of ______ (a/b) exponents:

•
$$a^{m/n} =$$

•
$$a^{-m/n} =$$

Name:	Hour:	Date:
Example #1: Rewrite the expression using ratio	onal exponent notation.	

Example #2: Rewrite the expression using radical notation.

1. $9^{1/5}$ 2. $12^{2/7}$	3. $4^{3/4}$
----------------------------	--------------

Example #3: Evaluate the expression without using a calculator.

You practice: Evaluate the expression without using a calculator.

1. $4^{5/2}$	2. $64^{-2/3}$	3. $(\sqrt[4]{16})^5$
--------------	----------------	-----------------------

Name:	Hour:	Date:

Example #4: Evaluate the expression using a calculator. Round answers to the nearest hundredth.

1. $(-9)^{1/5}$ 2. $12^{3/8}$ 3. $(\sqrt[4]{7})^3$

You practice: Evaluate the expression using a calculator. Round answers to the nearest hundredth.

1. $4^{2/5}$ 2. $64^{-2/3}$ 3. $(\sqrt[3]{-30})^2$

Notes:

The inverse opeartion of squaring a number is taking the ______ of that number.

Similarly, the inverse opeartion of raising a number to the power of ______ is taking the ______ of that number.

We use this idea to using

Example #5: Solve the equation.

1. $4x^5 = 128$ 2. $(x-3)^4 = 21$

You practice: Solve the equation.

1. $\frac{1}{4}x^3 = 2$ 2. $(x+5)^4 = 16$