\qquad
\qquad Date: \qquad

NOTES: Section 6.1 - Evaluate nth Roots and Use Rational Exponents

Goals: \#1 - I can interchange an expression between rational and radical notation, and evaluate the expression (using a calculator).
\#2 - I can evaluate a rational or radical expression (without using a calculator).
\#3 - I can solve equations using $\mathrm{n}^{\text {th }}$ roots.
Homework: Lesson 6.1 Worksheet

Exploration \#1: Work with a partner and answer the following questions.

1. Use a calculator to evaluate the following expressions.
a. $\sqrt{25}=$
b. $(25)^{1 / 2}=$
c. $\left(a^{1 / 3}\right)^{3}=$
d. $\left(x^{1 / 4}\right)^{4}=$
e. $\sqrt[3]{64}=$
f. $(64)^{1 / 3}=$

Notes:

There are \qquad properties of \qquad (a/b) exponents:

- $a^{m / n}=$
- $a^{-m / n}=$
\qquad Hour: \qquad Date: \qquad

Example \#1: Rewrite the expression using rational exponent notation.

1. $\sqrt[4]{13}$
2. $\sqrt[7]{3}$
3. $(\sqrt[4]{11})^{9}$

Example \#2: Rewrite the expression using radical notation.

1. $9^{1 / 5}$
2. $12^{2 / 7}$
3. $4^{3 / 4}$

Example \#3: Evaluate the expression without using a calculator.

1. $16^{3 / 2}$
2. $32^{-3 / 5}$
3. $\sqrt[3]{-64}$

You practice: Evaluate the expression without using a calculator.

1. $4^{5 / 2}$
2. $64^{-2 / 3}$
3. $(\sqrt[4]{16})^{5}$
\qquad
\qquad Date: \qquad

Example \#4: Evaluate the expression using a calculator. Round answers to the nearest hundredth.

1. $(-9)^{1 / 5}$
2. $12^{3 / 8}$
3. $(\sqrt[4]{7})^{3}$

You practice: Evaluate the expression using a calculator. Round answers to the nearest hundredth.

1. $4^{2 / 5}$
2. $64^{-2 / 3}$
3. $(\sqrt[3]{-30})^{2}$

Notes:

The inverse opeartion of squaring a number is taking the \qquad of that number.

Similarily, the inverse opeartion of raising a number to the power of \qquad is taking the \qquad of that number.

We use this idea to \qquad using \qquad .

Example \#5: Solve the equation.

1. $4 x^{5}=128$
2. $(x-3)^{4}=21$

You practice: Solve the equation.

1. $\frac{1}{4} x^{3}=2$
2. $(x+5)^{4}=16$
