NI	II.	D - 4 -
Name:	Hour:	Date:
1 (01110)	110 011 :	2 6.00.

NOTES: Section 5.5 – Apply the Remainder and Factor Theorems

Goals: #1 - I can perform polynomial long division.

- #2 I can divide polynomials synthetically.
- #3 I can factor a 3rd degree polynomial when one factor is given.
- #4 I can find the zeros of a 3^{rd} degree polynomial when one zero is given.

Homework: Lesson 5.5 Worksheet

Exploration #1: Work with a partner and answer the following questions.

- 1. Use <u>long division</u> to find the following quotients.
 - a. Divide 258 by 6.

b. Divide 1122 by 17.

c. Divide 289 by 8.

d. Divide 1704 by 18.

Notes:

One way to divide ______ is called _____.

Example #1: Divide using polynomial long division.

1.
$$(x^3 + 5x^2 - 7x + 2) \div (x - 2)$$

2.
$$(3x^4 - 5x^3 + 4x - 6) \div (x^2 - 3x + 5)$$

Name:

Hour: _____ Date: ____

You practice: Divide using polynomial long division.

1.
$$(2x^4 + x^3 + x - 1) \div (x^2 + 2x - 1)$$

2.
$$(x^3 - x^2 + 4x - 10) \div (x + 2)$$

Notes:

Another way to divide ______ is called ______.

THIS ONLY WORKS WHEN ______ BY A ______ POLYNOMIAL!

Example #2: Divide using synthetic division.

1.
$$(x^3 + 5x^2 - 7x + 2) \div (x - 2)$$

2.
$$(2x^3 + x^2 - 8x + 5) \div (x + 3)$$

You practice: Divide using synthetic division.

1.
$$(x^3 - x^2 + 4x - 10) \div (x + 2)$$

2.
$$(4x^3 + x^2 - 3x + 7) \div (x - 1)$$

Exploration #2: Work with a partner and answer the following questions.

1. Factor the polynomial $x^3 + 5x^2 - 9x - 45$ completely.

2. Below is a snapshot of the graph $f(x) = x^3 + 5x^2 - 9x - 45$. Find the zeros.

3. Find the real-number solutions of the equation $x^3 + 5x^2 - 9x - 45 = 0$

Notes:

A ______ if and only if _____.

Example:

The factor therom can be used to solve a variety of problems.

- Given one ______ of a polynomial, find the other _____.
- Give one ______ of a polynomial function, find the other _____.
- Given one _____ of a polynomial equation, find the other _____.

Example #3: Factor $f(x) = 3x^3 - 4x^2 - 28x - 16$ completely given that x + 2 is a factor.

You practice: Factor $f(x) = x^3 - 6x^2 + 5x + 12$ completely given that x - 4 is a factor.

Example #4: Find the other zeros of the function $f(x) = x^3 - 2x^2 - 23x + 60$ given that 3 is zero.

You practice: Find the other zeros of the function $f(x) = x^3 + 8x^2 + 5x - 14$ given that -2is zero.