NOTES: Section 5.1 – Use Properties of Exponents

Goals: #1 - I can simplify an expression using the properties of exponents and explain my reasoning using these properties.

#2 - I use the properties of exponents to write an expression for a figure's area or volume in terms of x.

Homework: Lesson 5.1 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. What happens when you multiply two powers with the same base? Write the product using exponents.

a.
$$(2^2)(2^3) = 7^5$$

777777

b.
$$(x^2)(x^6) = X^8$$

 $X \cdot X \cdot X \cdot X \cdot X \cdot X \cdot X \cdot X$

c. Write a general rule for finding the product of two powers with the same base.

$$a^m \cdot a^n = a^{\boxed{\bigcap + \bigcap}}$$

2. What happens when you divide two powers with the same base? Write the quotient using exponents.

a.
$$\frac{2^5}{2^2} = 7$$

b.
$$\frac{x^6}{x^3} = \chi^3$$

$$\chi \times \chi \times \chi \times \chi$$

c. Write a general rule for finding the quotient of two powers with the same base.

$$\frac{a^m}{a^n} = a^{\boxed{\gamma \gamma - \gamma \gamma}}$$

3. What happens when you find a power of a power? Write the expression using

a.
$$(2^2)^4 = 2^4$$

 $(7 \cdot 2)^4$
 $(2 \cdot 2)(2 \cdot 2)(2 \cdot 2)(2 \cdot 2)$

ponents.

a.
$$(2^2)^4 = 2^8$$

b. $(x^3)^3 = X^9$
 $(x \times x)^3$

c. Write a general rule for finding a power of a power.

$$(a^m)^n = a$$

b. $(x^3)^3 = X^9$

$$(x \times x)(x \times x)(x \times x)$$

$$(a^m)^n = a \frac{\mathbf{m} \cdot \mathbf{n}}{\mathbf{m} \cdot \mathbf{n}}$$

Name:		

	Da
Hour:	 2

4. What happens when you find a power of a product? Write the expression using exponents.

$$\begin{array}{ll}
\text{xponents.} \\
\text{a.} & (5 \cdot 4)^3 = 5^3 \cdot 4^3 \\
(5 \cdot 4)(5 \cdot 4)(5 \cdot 4)
\end{array}$$

b.
$$(3x)^2 = 3^2 X^2$$

 $(3x)(3x)$

c. Write a general rule for finding a power of a product.

finding a power of a product.
$$(a \cdot b)^m = a \boxed{\mathbb{M}} b \boxed{\mathbb{M}}$$

5. What happens when you find a power of a quotient? Write the expression using exponents.

ponents.
a.
$$\left(\frac{2}{3}\right)^2 = \frac{7^2}{3^2}$$

$$\frac{7 \cdot 7}{3 \cdot 3}$$

b.
$$\left(\frac{x}{2}\right)^2 = \frac{x^2}{y}$$

c. Write a general rule for finding the quotient of two powers with the same

$$\left(\frac{a}{b}\right)^m = \frac{a}{b} \boxed{m}$$

6. Evaluate the following exponents: a. $10^1 = 10^0$ b. $10^2 = 100^0$ c. $10^3 = 1000$ d. $10^0 = 1000$

a.
$$10^1 = 10^1$$

b.
$$10^2 = 10$$

c.
$$10^3 = 1000$$

d.
$$10^0 = 1$$

Use your calculator to evaluate the following exponents and write your answer as

FRACTIONS:
a.
$$10^{-1} = 10$$

b.
$$10^{-2} = \frac{1}{100}$$

c.
$$10^{-3} = \frac{1}{1000}$$

d. Write a general rule for finding negative powers.

e. Write a general rule for finding powers of 0.

$$a^0 = \bigcap$$

Properties of Exponents:

Property:	Algebraic Expression:	Example:
Product of Powers Property	$Q^m \cdot Q^n = Q^{m+n}$	$3^{2} \cdot 3^{3} = 3^{2+3} = 3^{5} = 243$
Power of a Power Property	$(U_{\omega})_{\mu} = V_{\omega \cdot \nu}$	$(3^2)^3 = 3^{2 \cdot 3} = 3^6 = 72^6$
Power of a Product Property	(a.b) = a b b m = x NOTE: (a+b) = a + b m	$(3.2)^3 = 3^3 - 2^3$
Negative Exponent Property	$\alpha^{-n} = \frac{1}{\alpha^n}$	$3^{-3} = \frac{1}{3^3} = \frac{1}{27}$ $\frac{1}{3^{-2}} = 3^2 = 9$
Zero Exponent Property	V ₀ = 1	3°=1
Quotient of Powers Property	$\frac{Q^m}{Q^n} = Q^{m-n}$	$\frac{3^3}{3^2} = 3^{3-2} = 3$
Power of a Quotient Property	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$\left(\frac{3}{2}\right)^3 = \frac{3^3}{2^3} = \frac{27}{8}$

Example #1: Evaluate the expression. Write your answer using exponents <u>and</u> as a simplified fraction. NO DECIMALS.

3.
$$\left(\frac{1}{2}\right)^{-3}$$

$$\frac{1^{-3}}{2^{-3}} \left[\begin{array}{c|c} \frac{2^{3}}{1^{3}} & 8 \end{array}\right]$$

You practice: Evaluate the expression. Write your answer using exponents and as a simplified fraction. NO DECIMALS.

1.
$$(3^{-2})^3$$

$$\begin{array}{c|c}
3^{-6} \\
\hline
1 \\
3^{-6}
\end{array}$$

3.
$$(-2)^3 \cdot (-2)^6$$

$$-517$$

4.
$$[(-4)^3]^2$$

$$[(-4)^6]$$

$$[4090]$$

Example #2: Simplify the expression. Evaluate all integers to powers. NO DECIMALS.

1.
$$(2d^{5}e^{-2})^{-3}$$

$$Z^{-3}d^{-15}e^{6}$$

$$\frac{e^{6}}{Z^{3}d^{15}}$$

$$\frac{e^{6}}{8d^{15}}$$

2.
$$\frac{(2e)^{-4}g^{5}}{e^{5}g^{-3}}$$

$$\frac{2^{-4}e^{-4}g^{5}}{e^{5}g^{-3}}$$

$$\frac{9^{8}}{10^{6}}$$

$$\frac{9^{8}}{10^{6}}$$

$$\frac{9^{8}}{10^{6}}$$

$$\frac{9^{8}}{10^{6}}$$

You practice: Simplify the expression. Evaluate all integers to powers. NO DECIMALS.

1.
$$\frac{\left(\frac{s^3}{t^{-4}}\right)^{-2}}{\int_{-\frac{1}{2}}^{\frac{1}{8}}}$$

$$\frac{\int_{-\frac{1}{2}}^{\frac{1}{8}}}{\int_{-\frac{1}{2}}^{\frac{1}{8}}}$$

2.
$$(7y^{2}z^{5})(y^{-4}z^{-5})$$

3.
$$\frac{(x^{-3}y^{3})^{2}}{x^{5}y^{6}}$$
 $\frac{x^{-6}y^{6}}{x^{5}y^{6}}$
 x^{-11}

4.
$$\left(\frac{a^2b^{-1}}{2a^3b^2}\right)^3$$

5.
$$\left(\frac{6x}{y^2}\right)^{-2} \cdot 12x^4y^{-10}$$

6.
$$\frac{2x^{-8}y^5z^{-7}}{4x^{-2}y^5z^{-8}}$$

Example #3: Write an expression for the figure's area of volume in terms of x.

$$1. V = \pi r^2 h$$

$$V = \prod X^3 \cdot \frac{1}{2}$$

$$V = \prod X^3$$

