\qquad
\qquad Date: \qquad

NOTES: Section 5.1 - Use Properties of Exponents

Goals: \#1 - I can simplify an expression using the properties of exponents and explain my reasoning using these properties.
\#2 - I use the properties of exponents to write an expression for a figure's area or volume in terms of x.

Homework: Lesson 5.1 Worksheet

Exploration \#1: Work with a partner and answer the following questions.

1. What happens when you multiply two powers with the same base? Write the product using exponents.
a. $\left(2^{2}\right)\left(2^{3}\right)=$
b. $\left(x^{2}\right)\left(x^{6}\right)=$
c. Write a general rule for finding the product of two powers with the same base.

$$
a^{m} \cdot a^{n}=a
$$

2. What happens when you divide two powers with the same base? Write the quotient using exponents.
a. $\frac{2^{5}}{2^{2}}=$
b. $\frac{x^{6}}{x^{3}}=$
c. Write a general rule for finding the quotient of two powers with the same base.

$$
\frac{a^{m}}{a^{n}}=a^{\square}
$$

3. What happens when you find a power of a power? Write the expression using exponents.
a. $\left(2^{2}\right)^{4}=$
b. $\left(x^{3}\right)^{3}=$
c. Write a general rule for finding a power of a power.

$$
\left(a^{m}\right)^{n}=a
$$

\qquad
\qquad Date: \qquad
4. What happens when you find a power of a product? Write the expression using exponents.
a. $(5 \cdot 4)^{3}=$
b. $(3 x)^{2}=$
c. Write a general rule for finding a power of a product.

$$
(a \cdot b)^{m}=a \square b^{\square}
$$

5. What happens when you find a power of a quotient? Write the expression using exponents.
a. $\left(\frac{2}{3}\right)^{2}=$
b. $\left(\frac{x}{2}\right)^{2}=$
c. Write a general rule for finding the quotient of two powers with the same base.

$$
\left(\frac{a}{b}\right)^{m}=\frac{a}{b} \square
$$

6. Evaluate the following exponents:
a. $10^{1}=$
b. $10^{2}=$
c. $10^{3}=$
d. $10^{0}=$

Use your calculator to evaluate the following exponents and write your answer as FRACTIONS :
a. $10^{-1}=$
b. $10^{-2}=$
c. $10^{-3}=$
d. Write a general rule for finding negative powers.

$$
a^{-m}=\frac{1}{a} \square
$$

e. Write a general rule for finding powers of 0 .

$$
a^{0}=\square
$$

\qquad
\qquad Date: \qquad

Droperties of Exponents:

Property:	Algebraic Expression:	Example:
Product of Powers Property		
Power of a Power Property		
Power of a Product Property		
Negative Exponent Property		
Quotient of Powers Property		
Zero Exponent Property		

\qquad
\qquad Date: \qquad

Example \#1: Evaluate the expression. Write your answer using exponents and as a simplified fraction. NO DECIMALS.

1. 3^{-4}
2. $\left(2^{8}\right)^{2}$
3. $\left(\frac{1}{2}\right)^{-3}$

You practice: Evaluate the expression. Write your answer using exponents and as a simplified fraction. NO DECIMALS.

1. $\left(3^{-2}\right)^{3}$
2. $\frac{8^{-4}}{8^{-6}}$
3. $(-2)^{3} \cdot(-2)^{6}$
4. $\left[(-4)^{3}\right]^{2}$
5. $\frac{5}{2^{-3}}$
6. -100^{0}

Example \#2: Simplify the expression. Evaluate all integers to powers. NO DECIMALS.

1. $\left(2 d^{5} e^{-2}\right)^{-3}$
2. $\frac{(2 e)^{-4} g^{5}}{e^{5} g^{-3}}$
3. $\frac{x^{-4} y^{3}}{3 y^{-2}} \cdot \frac{y^{3}}{x^{4}}$

You practice: Simplify the expression. Evaluate all integers to powers. NO DECIMALS.

1. $\left(\frac{s^{3}}{t^{-4}}\right)^{-2}$
2. $\left(7 y^{2} z^{5}\right)\left(y^{-4} z^{-1}\right)$
3. $\frac{\left(x^{-3} y^{3}\right)^{2}}{x^{5} y^{6}}$
\qquad
4. $\left(\frac{a^{2} b^{-1}}{2 a^{3} b^{2}}\right)^{3}$
5. $\left(\frac{6 x}{y^{2}}\right)^{-2} \cdot 12 x^{4} y^{-10}$
6. $\frac{2 x^{-8} y^{5} z^{-7}}{4 x^{-2} y^{5} z^{-8}}$

Example \#3: Write an expression for the figure's area of volume in terms of x.

1. $V=\pi r^{2} h$

