NOTES: Section 5.1 – Use Properties of Exponents

Goals: #1 - I can simplify an expression using the properties of exponents and explain my reasoning using these properties.

#2 - I use the properties of exponents to write an expression for a figure's area or volume in terms of *x*.

Homework: Lesson 5.1 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. What happens when you multiply two powers with the same base? Write the product using exponents.

a.
$$(2^2)(2^3) =$$
 b. $(x^2)(x^6) =$

c. Write a general rule for finding the product of two powers with the same base.

- 2. What happens when you divide two powers with the same base? Write the quotient using exponents.
 - a. $\frac{2^5}{2^2} =$ b. $\frac{x^6}{x^3} =$
 - c. Write a general rule for finding the quotient of two powers with the same base.

- 3. What happens when you find a power of a power? Write the expression using exponents.
 - b. $(x^3)^3 =$ a. $(2^2)^4 =$
 - c. Write a general rule for finding a power of a power.

$$(a^m)^n = a$$

Name:_____ Hour: _____ Date: _____

4. What happens when you find a power of a product? Write the expression using exponents.

a.
$$(5 \cdot 4)^3 =$$
 b. $(3x)^2 =$

c. Write a general rule for finding a power of a product.

$$(a \cdot b)^m = a \square b \square$$

5. What happens when you find a power of a quotient? Write the expression using exponents.

a.
$$(\frac{2}{3})^2 =$$
 b. $(\frac{x}{2})^2 =$

c. Write a general rule for finding the quotient of two powers with the same base.

$$\left(\frac{a}{b}\right)^m = \frac{a}{b}$$

6. Evaluate the following exponents: a. $10^1 =$ b. $10^2 =$ c. $10^3 =$ d. $10^0 =$

Use your calculator to evaluate the following exponents and write your answer as FRACTIONS :

a.
$$10^{-1} =$$
 b. $10^{-2} =$ c. $10^{-3} =$

d. Write a general rule for finding negative powers.

$$a^{-m} = \frac{1}{a}$$

e. Write a general rule for finding powers of 0.

$$a^0 = \square$$

Properties of Exponents:

Property:	Algebraic Expression:	Example:
Product of Powers Property		
Power of a Power Property		
Power of a Product Property		
Negative Exponent Property		
Zero Exponent Property		
Quotient of Powers Property		
Power of a Quotient Property		

Name:	Hour:	Date:
-------	-------	-------

Example #1: Evaluate the expression. Write your answer using exponents <u>and</u> as a simplified fraction. NO DECIMALS.

1.
$$3^{-4}$$
 2. $(2^8)^2$ 3. $\left(\frac{1}{2}\right)^{-3}$

You practice: Evaluate the expression. Write your answer using exponents <u>and</u> as a simplified fraction. NO DECIMALS.

1. $(3^{-2})^3$ 2. $\frac{8^{-4}}{8^{-6}}$ 3. $(-2)^3 \cdot (-2)^6$

4.
$$[(-4)^3]^2$$
 5. $\frac{5}{2^{-3}}$ 6. -100⁰

Example #2: Simplify the expression. Evaluate all integers to powers. NO DECIMALS.

1.
$$(2d^5e^{-2})^{-3}$$
 2. $\frac{(2e)^{-4}g^5}{e^5g^{-3}}$ 3. $\frac{x^{-4}y^3}{3y^{-2}} \cdot \frac{y^3}{x^4}$

You practice: Simplify the expression. Evaluate all integers to powers. NO DECIMALS.

1.
$$\left(\frac{s^3}{t^{-4}}\right)^{-2}$$
 2. $(7y^2z^5)(y^{-4}z^{-1})$ 3. $\frac{(x^{-3}y^3)^2}{x^5y^6}$

Name:_____ Hour:____ Date:_____
4.
$$\left(\frac{a^2b^{-1}}{2a^3b^2}\right)^3$$
 5. $\left(\frac{6x}{y^2}\right)^{-2} \cdot 12x^4y^{-10}$ 6. $\frac{2x^{-8}y^5z^{-7}}{4x^{-2}y^5z^{-8}}$

Example #3: Write an expression for the figure's area of volume in terms of *x*.

1. $V = \pi r^2 h$

