NOTES: Section 4.6 – Perform Operations with Complex Numbers

Goals: #1 - I can solve equations that have both real and imaginary solutions (by finding square roots).

- #2 I can add, subtract, multiply, and divide complex numbers.
- #3 I can use the properties of exponents to write a complex number in standard form.

Homework: Lesson 4.6 Worksheet

Exploration #1:

1. Solve $2x^2 + 11 = -37$

2. Look at the graph below.

a. What are the *x*-intercepts?

Notes:		
Not all quadratic equations have		solutions.
Mathematicians created a system of numbers using		,
defined as		
The Square Root of a	:	
• If <i>r</i> is a positive real number, then	Example:	
• By the above property, it follows that	Example:	

Name:	Hour:	Date:

Example #1: Solve the following quadratic equations.

1. $2x^2 + 11 = -37$ 2. $5x^2 + 33 = 3$

You practice: Solve the following quadratic equations.

3. $3x^2 - 7 = -31$ 4. $x^2 + 11 = 3$

Notes:

Α			is a number	
where	and	are		

If $b \neq 0$, then ______ is an ______.

Complex Numbers (a + bi)

Standard Form:	(Re Nun (a -	eal n bers + 0 <i>i</i>)	
Examples:			:
	-1	<u>5</u> 2	$\left \right $
	π	√2	

Real
mbers
+ 0i)Imaginary
Numbers
 $(a + bi, b \neq 0)$
 $2 + 3i \quad 5 - 5i$ $\frac{5}{2}$
 $\sqrt{2}$ Pure
Imaginary
Numbers
 $(0 + bi, b \neq 0)$
 $-4i \quad 6i$

Name:	_ Hour:	Date:	
Notes:			
To add or subtract two complex numbers,		th	neir
and their		sepa	arately.

Example #2: Write the expression as a complex number in standard form.

1. (8-i) + (5+4i)2. (7-6i) - (3-6i)

You practice: Write the expression as a complex number in standard form.

3. (9-i) + (-6+7i)4. 10 - (6+7i) + 4i

Notes:

To multiply two complex numbers, use the ______ or _____ Just as you do when multiplying real numbers or algebraic expressions.

Example #3: Write the expression as a complex number in standard form.

1. 4i(-6+i) 2. (9-2i)(-4+7i)

Name:	Hour:	Date:	
You practice: Write the expression as a co	omplex number in stand	lard form.	
3. $i(9-i)$		4. $(3+i)(5-i)$	
Notes:			
Two complex numbers of the form	and	a	re called
	·		
The product of		is always a rea	l number.
Example:			
We use this to	complex numbers.		
Example #4: Write the expression as a co	mplex number in stand	ard form.	
1. $\frac{7+5i}{1-4i}$		2. $\frac{5}{1+i}$	

You practice: Write the expression as a complex number in standard form.

3. $\frac{5+2i}{3-2i}$ 4.	$\frac{7i}{8+i}$
---------------------------	------------------

Name:	Hour: Date:
Notes:	
The of	a complex number,
denoted is a nonnegative real number defi	ned as
This is the between and the in the complex plane	z a bi $ z = \sqrt{a^2 + b^2}$ bi $ z = \sqrt{a^2 + b^2}$ bi real
Example #5 : Find the absolute value of the comp	lex number.
1. $-4 + 3i$	2. <i>—</i> 3 <i>i</i>

You practice: Write the expression as a complex number in standard form.

3. $-3-4i$ 4. $2+5$

Notes:

•

We can raise the ______ to different powers to notice a pattern.

- •
- .
- •
- •
- •

Name	Hour	Date:
	110ul .	

Example #6: Using the properties of exponents, write the complex number in standard form.

1. $-2 + i^2$ 2. $1 - 5i^7$

You practice: Write the expression as a complex number in standard form.

3. $2 - i^8$ 4. $5 + i^3$

CHALLENGE: What would i^{39} be? What about i^{101}