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e NOTES: Section 4.1 - Graph Quadratic Functions in Standard
Form

Goals: #1 -1 can identify the y-intercept, vertex, axis of symmetry, opening direction, and
maximum or minimum value from standard form of a quadratic.
#2 - | can graph a quadratic function from standard form.
#3 - | can create a quadratic equation from a word problem and change it into
standard form. e F
Homework: Lesson 4.1 Worksheet

T

Exploration #1: Graph the following function using a table of values.
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a. Make some observations about your graph:
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b. Do you know what this shape is called?
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c. Do you know what type of function this is?
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Notes:
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\)) i X Characteristics of Quadratic Functions:
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Example #1: Graph y = —2x? + 2. Compare the graph with the graph of y = x2.
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Comparison to y = x2: _ \
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Exploration #2: Graph y = 2x2 +Yx + 3 using a table of values. Agswer the following
questions. 4
4
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a. What is the x-value of the vertex?
e |
b. What is the axis of symmetry?
— ,‘ - _(,_,__L.t-) = —‘:‘ - --l
X~ AT 2R 4
c. Whatis the y-intercept?
P

CHALLENGE: How could we answer questions a-c by looking at the equation only?
LY

Notes:
We can use the following properties to graph any quadratic function in 3““’1“ (LV{A form.

y=ax?*+bx+c

The graph opens _\){) __if 0,79 and opens JUWN if_Q 'R

The graph gets NOYYOWLY i \ol >} and WV LU i 10 &)
” -b

The (}\X\S 0 ‘ 5\1“ “\l ”LU/H% is X = 2.0~ . This

is the same as the % -coodinate of the \JQ Y KX

- The -\ RV AP Y s (.

Scanned by CamScanner



Name: Hour: Date: o
Example #2: Graph y = - zx -Ix 13 Compare the graph with the graph of y= xZ ‘
ZJ“\ . J
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Comparison to y = x? -
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Example #3: Tell whether the function y = 3x% — 18x + 20 has a minimum valueor a

maximum value. Then find the minimum or maximum value. P ; -
L =3 wudn 32V so A mininviil ©
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33 1530+ 20 = =T | N -1 |

Example #4: A video store sells about 150 DVDs a week at the price of $20 each. The

owner estimates that for each $1 decrease in price, about 25 more DVDs will be sold each

week. Create a function that models the store’s weekly revenue, R, as a function of the DVD

price reduction, x. Then determine the price that the owner should sell DVDs for to

maximize revenue. vevtrive = prvg - PN Ds
(-0 (x) =~ (20-x) (150 + 25x)  FoIL
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