\qquad
\qquad Date: \qquad

NOTES: Section 4.1 - Graph Quadratic Functions in Standard Form

Goals: \#1 - I can identify the y-intercept, vertex, axis of symmetry, opening direction, and maximum or minimum value from standard form of a quadratic.
\#2 - I can graph a quadratic function from standard form.
\#3 - I can create a quadratic equation from a word problem and change it into standard form.

Homework: Lesson 4.1 Worksheet

Exploration \#1: Graph the following function using a table of values.

1. $y=-\frac{1}{2} x^{2}+3$

a. Make some observations about your graph:
b. Do you know what this shape is called?
c. Do you know what type of function this is?
\qquad Hour: \qquad Date: \qquad

Notes:

A \qquad is a function that can be written in the
\qquad : \qquad

The graph of a \qquad function is a \qquad .

Characteristics of Quadratic Functions:

- Parabolas can open \qquad or \qquad .
- The lowest or highest point (min/max value) on a parabola is called the
\qquad .
- The \qquad divides the parabola into mirror images and passes through the
\qquad .

Example \#1: Graph $y=-2 x^{2}+2$. Compare the graph with the graph of $y=x^{2}$.

AOS: \qquad

Vertex: \qquad

Opens: \qquad

Max./Min. Value: \qquad

x					
y					

Comparison to $y=x^{2}$:
\qquad
\qquad Date: \qquad

Exploration \#2: Graph $y=\frac{1}{3} x^{2}+3$ using a table of values. Answer the following questions.

x	y

a. What is the x-value of the vertex?
b. What is the axis of symmetry?
c. What is the y-intercept?

CHALLENGE: How could we answer questions a-c by looking at the equation only?

Notes:

We can use the following properties to graph any quadratic function in \qquad form.

$$
y=a x^{2}+b x+c
$$

- The graph opens \qquad if \qquad and opens \qquad if \qquad .
- The graph gets \qquad if \qquad and \qquad if \qquad .
- The \qquad is \qquad . This is the same as the \qquad -coodinate of the \qquad .
- The \qquad is \qquad -.
\qquad
\qquad Date: \qquad

Example \#2: Graph $y=-2 x^{2}+2$. Compare the graph with the graph of $y=x^{2}$.
AOS: \qquad

Vertex: \qquad

Opens: \qquad

Max./Min. Value: \qquad

x					
y					

Comparison to $y=x^{2}$:

Example \#3: Tell whether the function $y=3 x^{2}-18 x+20$ has a minimum value or a maximum value. Then find the minimum or maximum value.

Example \#4: A video store sells about 150 DVDs a week at the price of $\$ 20$ each. The owner estimates that for each $\$ 1$ decrease in price, about 25 more DVDs will be sold each week. Create a function that models the store's weekly revenue, R, as a function of the DVD price reduction, x. Then determine the price that the owner should sell DVDs for to maximize revenue.

