NOTES: Section 3.1 – Solve Linear Systems by Graphing

Goals: #1 - I can solve a linear system using the graphing method and then check my solution algebraically.

#2 - I can classify a system as consistent and independent, consistent and dependent, or inconsistent.

Homework: Lesson 3.1 Worksheet

Warm Up:

1. Identify the domain and range of the given relation. Then tell whether the relation is a function.

b. Range: $\begin{bmatrix} -3 & 3 \end{bmatrix}$

c. Function?: NO Why?

Exploration #1: Work with a partner. Graph both linear equations on the same graph.

$$4x + y = 8$$

$$y = -4x + 8$$

$$2x - 3y = 18$$

$$-3y = -7x + 18$$

$$-3 = -7x + 18$$

Circle where these lines intersect. Can you check if your answer is correct?

$$2(3)-3(-4)^{\frac{7}{2}}18$$

 $6+12\stackrel{?}{=}18$
 $18=18\sqrt{}$

Name:	Hour:	Date:	
Notes: A linear system	, consists of two	NU Ar equations.	
A SOIUTION of a system of linear equations, is a POINT (x,y) where the graphs of the equations in a system in the system.			
Exploration #2: Work with a partner. Graph bo	oth linear equations on	the same graph.	
2x + y = 4 $Y = -2x + 4$ $2x + y = 1$ $Y = -2x + 1$	-6 -5 -4 -3 -2 -1 0	1 2 3 4 5 6 A	
	-1 -2 -3 -4 -5 -6		
Circle where these lines intersect. Can you check if your answer is correct? NEVEY INTERSECT. POYUNCI INUS.			
Notes: Lines that never intersect are called	allet litt	ς	
Since the graphs of the system do NOT intersect, we have <u>no Solution</u> .			
CHALLENGE: Could we have a system with a so SOLUTION?		NE SOLUTION, or NO	

Name:_____ Hour:____ Date:____

Exploration #3: Work with a partner. Graph both linear equations on the same graph.

Notes:

Since the graphs of the system intersect at <u>EVERY</u> point, we have

infinitely many solutions.

Anytime there IS a solution to the linear system, we call the system CONSISHOT.

- A consistent system can be in depending if there is <u>ONE</u>solution.
- A consistent system can be dependent if there is MAN solutions.

Anytime there IS NO solution to the linear system, we call the system INCONSISTALE

Example #1: You are going fridge shopping! The price of refrigerator A is \$600, and the price of refrigerator B is \$1200. The cost of electricity needed to operate your new refrigerators is \$50 per year for refrigerator A and \$40 per year for refrigerator B.

a. Write a system of equations that models the cost of owning refrigerator A and the cost of owning refrigerator B. Be sure to define your variables.

A:
$$y = 50x + 600$$

B: $y = 40x + 1200$

b. Solve your system of equations by graphing. Be sure to label your axes.

T	able:		×
	Fridge	: A	B
years:	0	000	1200
1000	10	1100	1000
	50	3100	3700
	70	4100	4000

c. After how many years are the total costs of owning the refrigerators equal?

≈ 65 years