\qquad
\qquad Date: \qquad

NOTES: Section 3.1 - Solve Linear Systems by Graphing

Goals: \#1 - I can solve a linear system using the graphing method and then check my solution algebraically.
\#2 - I can classify a system as consistent and independent, consistent and dependent, or inconsistent.

Homework: Lesson 3.1 Worksheet

Warm Up:

1. Identify the domain and range of the given relation. Then tell whether the relation is a function.

a. Domain: \qquad
b. Range: \qquad
c. Function?: \qquad Why?

Exploration \#1: Work with a partner. Graph both linear equations on the same graph.

$$
\begin{aligned}
& 4 x+y=8 \\
& 2 x-3 y=18
\end{aligned}
$$

Circle where these lines intersect. Can you check if your answer is correct?
\qquad
\qquad Date: \qquad

Notes:

A \qquad , consists of two \qquad equations.

A \qquad of a system of linear equations, is a \qquad (x, y) where the graphs of the equations in a system \qquad .

Exploration \#2: Work with a partner. Graph both linear equations on the same graph.

Circle where these lines intersect. Can you check if your answer is correct?

Notes:

Lines that never intersect are called \qquad .

Since the graphs of the system do \qquad intersect, we have \qquad .

CHALLENGE: Could we have a system with a solution besides ONLY ONE SOLUTION, or NO SOLUTION?
\qquad
\qquad Date: \qquad

Exploration \#3: Work with a partner. Graph both linear equations on the same graph.

$$
\begin{aligned}
& 4 x-3 y=8 \\
& 8 x-6 y=16
\end{aligned}
$$

Circle where these lines intersect. Can you check if your answer is correct?

Notes:

Lines that intersect at every point are \qquad .

Since the graphs of the system intersect at \qquad point, we have
\qquad .

Anytime there IS a solution to the linear system, we call the system \qquad .

- A consistent system can be \qquad if there is \qquad solution.
- A consistent system can be \qquad if there is \qquad solutions.

Anytime there IS NO solution to the linear system, we call the system \qquad .

\qquad
\qquad Date: \qquad

Example \#1: You are going fridge shopping! The price of refrigerator A is $\$ 600$, and the price of refrigerator B is $\$ 1200$. The cost of electricity needed to operate your new refrigerators is $\$ 50$ per year for refrigerator A and $\$ 40$ per year for refrigerator B.
a. Write a system of equations that models the cost of owning refrigerator A and the cost of owning refrigerator B . Be sure to define your variables.
b. Solve your system of equations by graphing. Be sure to label your axes.

c. After how many years are the total costs of owning the refrigerators equal?

