
NOTES: Section 13.1 - Use Trigonometry and Right Triangles

Goals: #1 - I can evaluate the 6 trigonometric functions for an angle, θ , when given two sides in a right triangle.

- #2 I can evaluate the 6 trigonometric functions, without a calculator, for 30, 45, and 60 degree angles.
- #3 I can evaluate the other 5 trigonometric functions for an angle, θ , when given one of the ratios.
- #4 I can use trigonometry to find 2 unknown sides of a right triangle when given one acute angle measure and one side length.

Homework: Lesson 13.1 Worksheet

Notes:

Consider one of the acute angles heta of a right triangle. Ratios of a right triangle's side lengths

are used to define the six TIGONOMITTIC FUNCTIONS

Sine

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

Cosine

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

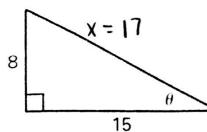
Tangent

$$\tan \theta = \frac{OPPOSIFC}{OQUECTOF}$$

Cotangent
$$\cot \theta = \frac{\alpha dil(n)}{\alpha \gamma \gamma \delta SiFC}$$

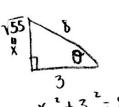
Son-lah-Toa

adjacent side


Coselant $\theta = \frac{hapotenuse}{opposite}$

$$\theta = \frac{hypoknyse}{adjacent}$$

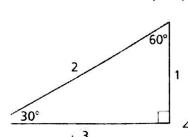
Example #1: Evaluate the six trigonometric functions of the angle θ . $SIN\theta = \frac{0}{h} = \frac{8}{17}$ (05 $\theta = \frac{\alpha}{h} = \frac{15}{17}$

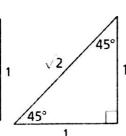

$$sin\theta = \frac{8}{h} = \frac{8}{1}$$

$$(050 = \frac{a}{b} = \frac{15}{17}$$

$$tand = \frac{0}{a} = \frac{8}{15}$$
 Cot $\theta = \frac{0}{0} = \frac{15}{8}$

Example #2: If θ is an acute angle of a right triangle and $\cos \theta = \frac{3}{8}$, find the values of the other five trigonometric functions of θ .




$$(5(0 - \frac{8}{155}) \cdot \frac{55}{155}) = \frac{3755}{55}$$

$$= \frac{8155}{55}$$

loration #1: Work with a partner and answer the following questions.

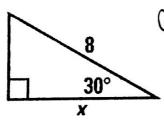
1. Find the exact values of the sine, cosine, and tangent functions for the angles 30°, 45°, and 60°

$$\sin 30^{\circ} = \frac{1}{2}$$
 $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
 $\sin 45^{\circ} = \frac{1}{\sqrt{12}} = \frac{17}{2} \cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{1}{2} \tan 45^{\circ} = \frac{1}{1} = 1$
 $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ $\cos 60^{\circ} = \frac{1}{2}$ $\tan 60^{\circ} = \frac{\sqrt{3}}{3} = \sqrt{3}$

$$\tan 30^\circ = \frac{1}{13} = \frac{13}{3}$$

$$\tan 45^\circ = \frac{1}{1} = 1$$

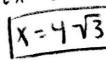
$$\tan 60^\circ = \frac{13}{1} = \sqrt{3}$$

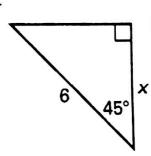

Notes:

	ho	ha	40	
tan θ	csc θ	sec θ	cot θ	

θ	$\sin \theta$	$\cos \theta$	tan θ	csc θ	sec θ	$\cot \theta$
30°	1/2	√3 Z	\\ 3	2	273	13
45°	72	72	١	12	72	1
60°	13 2	1-2	√ 3	2√3	2	13/3

Example #3: Find the exact value of x in the triangles below.


1.

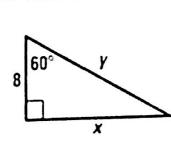


(0530° = 3

(0345° = 7

You practice:

1. If θ is an acute angle of a right triangle and $\sin \theta = \frac{4}{7}$, find the values of the other five SINO = 4 (050 = 133 + 1000 = 1/13) TR trigonometric functions of θ .



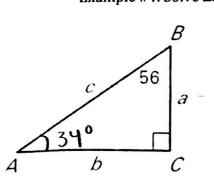
$$(050 = \frac{\sqrt{33}}{7}$$

$$\sqrt{33}$$
 $+4^{3}=7^{2}$
 $\chi^{2}=33$
 $\chi=\sqrt{33}$

$$(0+0=\frac{1135}{33}$$

2. Find the exact value of x and y in the triangle below.

$$(05 b0° = \frac{8}{y}$$


$$\frac{1}{2} = \frac{8}{y}$$

$$y = 16$$

Notes:

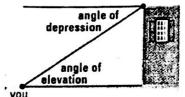
Solving a ________ is finding ________ unknown _______ lengths and _______ measures.

Example #4: Solve $\triangle ABC$. Round answers to the nearest tenth, when necessary

$$13. + 40.56^{\circ} = \frac{b}{13} \cdot 13$$

$$\angle A = 180^{\circ} - 90^{\circ} - 56^{\circ}$$
 $\angle A = 34^{\circ}$

Notes:

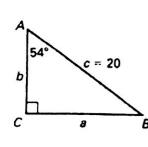

Angles of Sight:

If you look at a point above you, the angle that your line of sight makes with a line parallel to the ground is called the <u>engle of elevation</u>


The angle between a line parallel to the group and your line of sight is called the

angle of depression

These angles have the <u>SQML</u> measure.



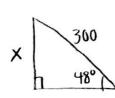
Example #5: You are measuring the height of your school building. You stand 25 feet from the base of the school. The angle of elevation from a point on the ground to the top of the school is 62°. Estimate the height of the school to the nearest foot.

You practice:

1. Solve $\triangle ABC$. Round answers to the nearest tenth, when necessary.

20.
$$\sin 54^{\circ} = \frac{\alpha}{20}$$
. 70

$$70 \sin 54^{\circ} = \alpha$$


$$\sqrt{\alpha} \approx 10.2$$

$$(16.7)^{2} + b^{2} = (20)^{2}$$

$$b^{2} = 137.56$$

$$b^{2} = 11.7$$

2. A parasailer is attached to a boat with rope 300 feet long. The angle of elevation from the boat to the parasailer is 48°. Estimate the parasailer's height above the boat.

$$300 - \sin 48^\circ = \frac{x}{300} - 300$$