NOTES: Section 13.1 – Use Trigonometry and Right Triangles

Goals: #1 - I can evaluate the 6 trigonometric functions for an angle, θ , when given two sides in a right triangle.

- #2 I can evaluate the 6 trigonometric functions, without a calculator, for 30, 45, and 60 degree angles.
- #3 I can evaluate the other 5 trigonometric functions for an angle, θ , when given one of the ratios.
- #4 I can use trigonometry to find 2 unknown sides of a right triangle when given one acute angle measure and one side length.
- #5 I can use trigonometry to find unknowns in a real life application. Homework: Lesson 13.1 Worksheet

Notes:

Consider o	one of the acute angles $ heta$ of a rig	ght triangle. Ra	atios of a right triangle's	side lengths
are used to	o define the six			-: -: eside
Sine	$\sin \theta =$ ———	Cosine	$\cos \theta =$	- hypotenuse θ adjacent side
Tangent	$\tan \theta =$ ———	Cotangent	$\cot \theta =$ ———	
Cosecant	$\csc \theta =$	Secant	$\sec \theta =$ —	

Example #1: Evaluate the six trigonometric functions of the angle θ .

Name:	Hour:	Date:
		2

Example #2: If θ is an acute angle of a right triangle and $\cos \theta = \frac{3}{8}$, find the values of the other five trigonometric functions of θ .

Exploration #1: Work with a partner and answer the following questions.

1. Find the exact values of the sine, cosine, and tangent functions for the angles 30°, 45°, and 60°

Notes:

θ	sin $ heta$	$\cos \theta$	tan 0	$\csc \theta$	sec θ	cot θ
30°						
45°						
60°						

Example #3: Find the exact value of *x* in the triangles below.

Name:	Hour:	Date:

You practice:

1. If θ is an acute angle of a right triangle and $\sin \theta = \frac{4}{7}$, find the values of the other five trigonometric functions of θ .

2. Find the exact value of *x* and *y* in the triangle below.

Notes:

Solving a ______ is finding ______ unknown ______ lengths and ______ measures.

Example #4: Solve $\triangle ABC$. Round answers to the nearest tenth, when necessary.

Name:	Hour:	Date:		
Notes:				
:				
If you look at a point above you, the angle that your line of sight makes with a line parallel				
to the ground is called the				

The angle between a line parallel to the group and your line of sight is called the

These angles have the _____ measure.

Example #5: You are measuring the height of your school building. You stand 25 feet from the base of the school. The angle of elevation from a point on the ground to the top of the school is 62°. Estimate the height of the school to the nearest foot.

You practice:

1. Solve $\triangle ABC$. Round answers to the nearest tenth, when necessary.

2. A parasailer is attached to a boat with rope 300 feet long. The angle of elevation from the boat to the parasailer is 48°. Estimate the parasailer's height above the boat.