\qquad Hour: \qquad Date: \qquad

NOTES: Section 13.1 - Use Trigonometry and Right Triangles

Goals: \#1 - I can evaluate the 6 trigonometric functions for an angle, θ, when given two sides in a right triangle.
\#2 - I can evaluate the 6 trigonometric functions, without a calculator, for 30, 45, and 60 degree angles.
\#3 - I can evaluate the other 5 trigonometric functions for an angle, θ, when given one of the ratios.
\#4 - I can use trigonometry to find 2 unknown sides of a right triangle when given one acute angle measure and one side length.
\#5 - I can use trigonometry to find unknowns in a real life application.

Homework: Lesson 13.1 Worksheet

Notes:

Consider one of the acute angles θ of a right triangle. Ratios of a right triangle's side lengths are used to define the six \qquad _:

Sine

$$
\sin \theta=\square
$$

Cosine
$\cos \theta=$ \qquad

$$
\text { Tangent } \tan \theta=
$$

Cosecant $\csc \theta=\square$
Secant
$\sec \theta=$ \qquad

Example \#1: Evaluate the six trigonometric functions of the angle θ.

8

15
\qquad
\qquad Date: \qquad

Example \#2: If θ is an acute angle of a right triangle and $\cos \theta=\frac{3}{8}$, find the values of the other five trigonometric functions of θ.

Exploration \#1: Work with a partner and answer the following questions.

1. Find the exact values of the sine, cosine, and tangent functions for the angles $30^{\circ}, 45^{\circ}$, and 60°

Notes:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
30°						
45°						
60°						

Example \#3: Find the exact value of x in the triangles below.
1.

2.

\qquad
\qquad Date: \qquad

You practice:

1. If θ is an acute angle of a right triangle and $\sin \theta=\frac{4}{7}$, find the values of the other five trigonometric functions of θ.
2. Find the exact value of x and y in the triangle below.

Notes:
Solving a \qquad is finding \qquad unknown \qquad lengths and
\qquad measures.

Example \#4: Solve $\triangle A B C$. Round answers to the nearest tenth, when necessary.

\qquad
\qquad Date: \qquad

Notes:

\qquad _:

If you look at a point above you, the angle that your line of sight makes with a line parallel to the ground is called the \qquad .

The angle between a line parallel to the group and your line of sight is called the
\qquad .

These angles have the \qquad measure.

Example \#5: You are measuring the height of your school building. You stand 25 feet from the base of the school. The angle of elevation from a point on the ground to the top of the school is 62°. Estimate the height of the school to the nearest foot.

You practice:

1. Solve $\triangle A B C$. Round answers to the nearest tenth, when necessary.

2. A parasailer is attached to a boat with rope 300 feet long. The angle of elevation from the boat to the parasailer is 48°. Estimate the parasailer's height above the boat.
