Graphing:

Finding a point & slope from standard form:

Notes:
$$4x + 2y = 12$$

 $-4x$
 $2y - -4x + 12$
 $y = -2x + 4y = point: (0, 4)$

Finding a point & slope from slope-intercept form:

Finding a point and slope from point-slope form:

Notes:

$$y = -\frac{1}{2}x + 5$$

 $m = -\frac{1}{2}$
Point: (0,5)

Notes:

$$y + 5 = \frac{1}{3}(x + 2)$$

 $m = \frac{1}{3}$
 $point: (-2, -5)$

Finding a point and slope from perpendicular/parallel lines:

Notes:

Perpendicular to:
$$y = \frac{2}{3}x - 5$$

Parallel to: $y = \frac{1}{4}x + 3$

Example:

Graph:
$$y = -2x + 4$$
 $y - 10t + 4$

Graph:
$$y-3=\frac{1}{2}(x-1)$$
 $point: (1,3)$

Forms of Linear Equations:

Slope-Intercept form:

Slope a by-intercept	y= -2x+4 m=-z y-in+:4	Slope M= 42-41
		*

Point-Slope Form:

Notes

$$y-y_1=m(x-x_1)$$
 $y-4=\frac{1}{2}(x+2)$
 $y-3=\frac{1}{2}(x+2)$
 $y-4=\frac{1}{2}(x+2)$
 $y-4=\frac{1}{2}(x+2)$
 $y-4=\frac{1}{2}(x+2)$
 $y-4=\frac{1}{2}(x+2)$
 $y-4=\frac{1}{2}(x+2)$

Standard Form:

Notes:

$$Ax + By = C$$
 $3x + 5y = 2$
Constants

Examples:

Convert to slope-intercept form: y = mx + b

(1)
$$3x - 2y = 8$$

 $-3x$ $-3x$
 $-2y = -3x + 8$
 $-2y = -3x + 8$
 $-2y = -3x + 4$
Convert to standard form: Ax + By = C.
(3) $y + 4 = -3(x + 1)$
 $y + 4 = -3x - 3$
 $+3x$
 $3x + y + 4 = -3$
 -4 -4

$$\frac{5y = -4x}{5} - \frac{8}{5}$$

$$y = -\frac{4}{5}x -$$

Practice:

Convert to slope-intercept form: q = mx + b

(1)
$$x-y = -3$$

 $-X$ $-X$
 $-Y = -X - 3$
 $-Y = X + 3$

Convert to standard form: Ax + By = C

(3)
$$y - 3 = 2(x - 6)$$

 $y - 3 = 7x - 12$
 $-2x - 2x$
 $-2x + y - 3 = -12$
 $-2x + y - 3 = -12$
(5) Find the slope of the line through

(5,9) and (-6,-4).

$$M = \frac{9 - (-4)}{5 - (-6)} = \frac{13}{11}$$

(4)
$$y-1=\frac{2}{3}(x+3)$$

 $y-1=\frac{2}{3}x+2$
 $-\frac{2}{3}x-\frac{2}{3}x$
 $-\frac{2}{3}x+y-1=2$
(6) Write a linear equation in slope-intercept form: a slope of -2 and a y-intercept of 7.

(7) Write a linear equation in standard form: $A \times + By = C$ (8) Write a linear equation in both forms:

(7) Write a linear equation in standard form:
$$A \times + By = ($$
 (8) Write a linear equation in both forms: $y = 100 + 100 + 100 = 100$

(9) Write an equation of a line in slope-intercept form that is perpendicular to y = 3x - 7 and passes y=mx + b through the point (0,-5).

$$m = -\frac{1}{3}$$
 $y = -\frac{1}{3}x - 5$

(10) Write an equation of a line in slope-intercept form that is parallel to $y = \frac{2}{5}x + 9$ and passes through the y=mx + b point (3,2).

Practice:

Graph the following lines using the information:

(1)
$$y = -2x + 3$$

y-int: 3 510 pe: - = =

(2)
$$2x + 3y = 12$$

(3)
$$y + 3 = 2(x + 1)$$

slope: 2 point (-1,-3)

(4) Parallel to 2x - 3y = 9, passing through (-3,-1)

(6)
$$y = (2)^x$$

Simplifying Exponents:

Product of Powers Property:

Notes:

$$\sigma_m \cdot \sigma_p = \sigma_{m+p}$$

$$X_3$$
, $X_2 = X_8$

Power of a Power Property:

Notes:

$$(\alpha^m)^n = \alpha^{m \cdot n}$$

$$\left(X^{3}\right)^{5}=X^{15}$$

Quotients property:

$$0 \frac{\sqrt[n]{n}}{\sqrt[n]{n}} = \sqrt[n]{m-n}$$

$$\frac{\chi^5}{}$$
 - χ^2

$$\frac{\chi^5}{\chi^3} = \chi^2$$
 $\frac{3^4}{3^2} = 3^2$

$$2\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

$$\left(\frac{x}{y}\right)^3 = \frac{x^3}{y^3}$$

$$\left(\frac{x}{y}\right)^3 = \frac{x^3}{y^3} \qquad \left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2}$$

Negative Exponents & Zero Exponents:

$$0 \alpha^{-n} = \frac{1}{\alpha^n}$$

$$\chi^{-5} = \frac{1}{\chi_5}$$

$$\chi^{-5} = \frac{1}{\chi^{5}} \qquad \frac{1}{\chi^{-3}} = \chi^{3}$$

$$\chi_{o} = 1$$

Practice:

(1)
$$x^2 \cdot x^5$$
 X^{2+5} X^7

(5)
$$(4x^{0})^{3}$$

 $(4\cdot1)^{3}$
 4^{3}
 $(7) (x^{5})^{3}$
 $x^{5\cdot3}$

$$(9)\frac{x^{5}}{x^{2}}$$

$$X$$

$$5-2$$

$$X^{3}$$

$$\frac{3^{2} x^{2}}{\sqrt[3]{y^{6}}}$$

$$\frac{3^{2} x^{2}}{\sqrt[3]{y^{6}}}$$

$$\frac{9 x^{2}}{3\sqrt[3]{y^{6}}}$$

$$\frac{x^{2}}{\sqrt[3]{y^{6}}}$$

(2)
$$2x^{5} \cdot 4x^{0}$$

 $2x^{5} - 4 \cdot 1$
 $2 \cdot 4 \cdot 1 \cdot x^{5}$
 $8x^{5}$
(4) $3x^{3} \cdot 2x^{-3}$
 $3 \cdot 2 \cdot x^{3}$
 $5 \cdot 2 \cdot x^{3}$
 $x^{4}y^{1} = x^{4-5}y^{7-5} = x^{1}$
(8) $(\frac{2}{3})^{3}$
 $\frac{2^{3}}{3^{3}}$
 $\frac{8}{21}$
(10) $\frac{x}{4x^{-4}}$
 $\frac{x^{1} - (-4)}{x^{2}}$
 $\frac{x^{4}y^{4}}{4x^{4}}$
 $\frac{x^{4}y^{4}}{4x^{4}}$
 $\frac{x^{4}y^{4}}{4x^{4}}$
 $\frac{x^{4}y^{4}}{4x^{4}}$
 $\frac{x^{4}y^{4}}{4x^{4}}$

Simplifying Radicals:

Simplifying Radicals using the product property (gets rid of perfect squares in the radicand):

Notes:

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 Find the biggest
 $\sqrt{43} = \sqrt{9} \cdot \sqrt{7}$
= $3\sqrt{7}$

Simplifying Radicals using the quotient property (gets rid of fractions in the radicand):

Notes:
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

(i) $\sqrt{\frac{4}{9}} = \frac{\sqrt{9}}{\sqrt{9}} = \frac{2}{3}$
(ii) $\sqrt{\frac{3}{10}} = \frac{\sqrt{3}}{\sqrt{10}} = \frac{\sqrt{3}}{4}$

Rationalizing the Denominator (gets rid of radicals in the denominator):

Notes:
$$\sqrt{3} = \sqrt{13} = \sqrt{3} \cdot \sqrt{3} = \sqrt{3}$$
 Multiply both top: bottom by radical denominator $\sqrt{3} = \sqrt{3} \cdot \sqrt{5} = \sqrt{15} \cdot \sqrt{5} = \sqrt{15} \cdot \sqrt{5} = \sqrt{5} = \sqrt{5}$

Evaluating vs. Simplifying

Simplifying: simplified answer satisfies the following rules

- (1) No perfect squares allowed in the radicand.
 - (2) No fractions allowed in the radicand.
 - (3) No radicals allowed in the denominator.

Evaluating: get a whole number/decimal answer

Practice:

In #1-10, simplify the following expressions.

$$(1) - \sqrt{45}$$
 $- \sqrt{9 \cdot \sqrt{5}}$
 $- 3\sqrt{5}$

 $(7)\sqrt{-49}$

$$(9) - 2\sqrt{\frac{8}{10}} - 2\sqrt{\frac{4}{5}} = -2\frac{\sqrt{9}}{\sqrt{5}} = -2\frac{2}{\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}$$

$$= -2\sqrt{\frac{4}{5}} = -2\frac{\sqrt{9}}{\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}$$

Evaluate the following expressions:

$$\begin{array}{c} (11) & 5 \pm 2\sqrt{3} \\ & 5 \pm 3.46 \\ \hline & 846 & 1.54 \end{array}$$

(13) Evaluate
$$\sqrt{b^2 - 4ac}$$
 when $a = -5, b = 6, c = 7$

$$\sqrt{(b)^2 - 4(-5)(7)}$$

$$\sqrt{3b + 140}$$

$$\sqrt{17b}$$

$$\sqrt{13.2b}$$

$$(2)\sqrt{300}$$

 $\sqrt{100} \cdot \sqrt{3}$
 $\boxed{10\sqrt{3}}$

$$(8)\sqrt{\frac{16}{3}} = \frac{4}{\sqrt{3}} \cdot \sqrt{\frac{3}{3}} = \frac{4}{\sqrt{3}} \cdot \sqrt{\frac{3}{3}} = \frac{4}{\sqrt{3}}$$

$$5\sqrt{\frac{4}{15}} = 5\sqrt{\frac{9}{15}} = 5\sqrt{\frac{3}{15}} \cdot \sqrt{\frac{15}{15}}$$

$$= \frac{15\sqrt{15}}{15}$$

$$= \sqrt{15}$$

$$= \sqrt{15}$$

$$= \sqrt{15}$$

$$\frac{2 \pm 3\sqrt{5}}{3}$$

$$\frac{2 \pm \sqrt{5}}{3}$$

$$2 \cdot \sqrt{2}$$

$$2 \cdot 9 \cdot 7$$

Solving quadratics with square roots:

Notes:
$$2x^2 = 72$$
 $2x^2 = 104$ $2x^2 = 104$ $2x^2 = 30$ $2x^2 = 104$ $2x^2 = 30$ $2x^2 = 104$ $2x^2 = 104$

Solving inequalities:

Notes:
$$4x - 2 = 14$$
 (2) $-3x > 9$ * Flip sign when $4x = 16$ X $2 - 3$ by a negative number:

Solving equations:

Notes:
$$0.3x + 7 = 78$$
 $\times 684$ variable by itself! $\times 7.3x = 21$ $\times 7.3x = 21$ $\times 7.3x = 3$ \times

Practice:

(1)
$$x^{2} - 5 = -4$$

 $+5 + 5$
(2) $9x^{2} + 10 = 91$
 $-10 - 10$
(3) $x^{2} = 64$
 $\sqrt{x^{2}} = \sqrt{y^{2}}$
 $\sqrt{x^{2}} = \sqrt{y^{2}}$
(4) $3 + 4x^{2} = -85$
 -3
(5) $-5x^{2} = -500$
 -5
(6) $2(x - 5) = \frac{10}{2}$
 $x - 5 = 5$
 $x - 5 = 3$
 $x - 5 =$

Solving a System of Linear Equations:

Solving a system by graphing:

Notes: ① y = 4x - 5 m = 4 y - int = -5② 2x + y = 7 -2x y = -2x + 7 m = -2y - int = 7

Steps:

- (1) Graph both of the lines.
- (2) Find the point where the lines intersect.
- (3) Solution is always a coordinate point.

Solving a system by substitution:

Solution:

Steps:

- (1) Isolate one variable of <u>one</u> equation (pick the easiest).
- (2) Substitute the expression from step 1 into <u>the other</u> equation. Solve.
- (3) You're half way! Substitute that solution into the original equation and solve for the remaining variable.
- (4) Answer will always be a coordinate point.

Solving a system by elimination:

Steps:

- (1) Rearrange the equations into Standard Form (Ax + By = C)
- (2) If a variable does not eliminate, multiply one or both equations to get opposite coefficients of the same variable.
- (3) Add the columns together (one variable should eliminate). Solve for the remaining variable. Half way!
- (4) Take that solution and plug it into either equation and solve for the remaining variable.
- (5) Answer is always a coordinate point.

Solving a system of inequalities:

- (1) Rearrange both equations into either "SIF" or "SF".
- (2) Graph both of the lines.
 - Use a dashed line for >, <
 - Use a solid line for \geq , \leq
 - c. Shade above for \geq , >; below for \leq , < ****
- (3) Pick a point in the shaded area to check your solution

Practice:

For #1-2, use elimination to solve the system of equations.

For #3-4, use <u>substitution</u> to solve the system of equations.

$$(3)(y = -8x - 16) \longrightarrow y = -8(-1) - 10$$

$$-3x + y = -5$$

$$-3x + (-8x - 10) = -5$$

$$-3x - 8x - 10 = -5$$

$$-11x = 11$$

$$\boxed{x = -1}$$

For #5-6, use graphing to solve the system of equations.

(5)
$$y = x + 1$$
 Slope: 1
 $y = 2x - 4$ Slope: 2
 $y - int: -4$ (5, 6)

Graph the system of inequalities:

Write the equation of the line from the graph:

Exponential Growth and Decay:

Growth

Formula: y = C (1+r)+

Decay Formula: $y = C(1-r)^{t}$

M(M

Ex 1). In an experiment it has been noted that a certain drug kills the salmonella bacteria at a rate of 9% per hour. If the initial population of the bacteria was 100,000, what will it be 5 hours after taking the drug?

y≈ Toz, 403 bacteria

Ex 2). Today you bought a truck for \$10,000. The price of the truck depreciates at a rate of 8% per year. What would the price of the truck be after 7 years?

$$A = 10'000(1-0'08)$$

$$A = C(1-L)$$

$$A = C(1-L)$$

$$y = 10,000 (0.92)$$

 $y \approx [35,578.4]$

Practice:

ctice: growth (1) Find the bank account balance if the account starts with \$100, has an annual rate of 4%, and the money was left in the account for 12 years.

of cont (2) You buy a new computer for \$2,100. The computer decreases by 50% annually. What will the price of the computer be in 3 years?

$$y = C(1 \cdot r)^{\frac{1}{4}}$$

 $y = 2,100(1 - 0.5)^{3}$

$$y = 2,100 (0.5)^3$$

 $y \approx [$262.50]$