Graphing:

Finding a point & slope from standard form:

Notes:

Finding a point & slope from slope-intercept form:

Notes:

Finding a point and slope from point-slope form:

Notes:

Finding a point and slope from perpendicular/parallel lines:

Perpendicular to:

Notes:

Parallel to:

Example:

Graph: y = -2x + 4

Graph:
$$y - 3 = \frac{1}{2}(x - 1)$$

Forms of Linear Equations:

Slope-Intercept form:

Notes:

Point- Slope Form:

Notes

Standard Form:

Notes:

Examples:

Convert to slope- intercept form:

(1)
$$3x - 2y = 8$$
 (2) $4x + 5y = -8$

Convert to standard form:

(3)
$$y + 4 = -3(x + 1)$$
 (4) $y - 4 = -\frac{1}{3}(x + 6)$

Convert to slope-intercept form:

(1)
$$x - y = -3$$
 (2) $2x - 3y = 12$

Convert to standard form:

(3)
$$y - 3 = 2(x - 6)$$
 (4) $y - 1 = \frac{2}{3}(x + 3)$

(5) Find the slope of the line through	(6) Write a linear equation in slope-intercept
(5,9) and (-6,-4).	form: a slope of -2 and a y-intercept of 7.

(7) Write a linear equation in standard form:
line passing through the points (-5,4) and (-1, -6).

(8) Write a linear equation in <u>**both**</u> forms: slope of $\frac{3}{5}$ and a y-intercept of 4.

(9) Write an equation of a line in slope-intercept form that is perpendicular to y = 3x - 7 and passes through the point (0,-5).

(10) Write an equation of a line in slope-intercept form that is parallel to $y = \frac{2}{5}x + 9$ and passes through the point (3,2).

Graph the following lines using the information:

(3) y + 3 = 2(x + 1)

(5) Through points (2, 5) and (-4, -2).

(2) 2x + 3y = 12

(4) Parallel to 2x - 3y = 9, passing through (-3,-1)

Simplifying Exponents:

Product of Powers Property:

Notes:

Power of a Power Property:

Notes:

Quotients property:

Notes:

Negative Exponents & Zero Exponents:

Notes:

(1) $x^2 \cdot x^5$	(2) $2x^5 \cdot 4x^0$

(2) (3)
$$2y^3 \cdot y \cdot y^5$$
 (4) $3x^3 \cdot 2x^{-3}$

(5)
$$(4x^0)^3$$
 (6) $\frac{x^4}{x^2y^5} \cdot \frac{y^7}{x^3}$

(7)
$$(x^5)^3$$
 (8) $\left(\frac{2}{3}\right)^3$

(9)
$$\frac{x^5}{x^2}$$
 (10) $\frac{x}{4x^{-4}}$

$$(11)\left(\frac{3x}{6y^3}\right)^2 \tag{12} \frac{4x^0y^{-2}z^3}{4xy^4}$$

Simplifying Radicals:

Simplifying Radicals using the product property (gets rid of perfect squares in the radicand):

Notes:

Simplifying Radicals using the quotient property (gets rid of fractions in the radicand):

Notes:

Rationalizing the Denominator (gets rid of radicals in the denominator):

Notes:

Evaluating vs. Simplifying

Simplifying: simplified answer satisfies the following rules

- (1) No perfect squares allowed in the radicand.
 - (2) No fractions allowed in the radicand.
 - (3) No radicals allowed in the denominator.

Evaluating: get a whole number/decimal answer

In #1-10, simplify the following expressions.	
(1) $-\sqrt{45}$	(2)√300
(3) 3√ <u>98</u>	$(4)\frac{1}{2}\sqrt{28}$
(5) 4√9	(6) $\sqrt{108}$
(7) $\sqrt{-49}$	$(8)\sqrt{\frac{16}{3}}$

$$(9) - 2\sqrt{\frac{8}{10}} \tag{10} 5\sqrt{\frac{27}{45}}$$

Evaluate the following expressions:

(11)
$$5 \pm 2\sqrt{3}$$
 (12) $\frac{2\pm 3\sqrt{5}}{3}$

(13) Evaluate
$$\sqrt{b^2 - 4ac}$$
 when $a = -5, b = 6, c = 7$

Solving quadratics with square roots:

Notes:

Solving inequalities:

Notes:

Solving equations:

Notes:

Practice:

(1) $x^2 - 5 = -4$ (2) $9x^2 + 10 = 91$ (3) $x^2 = 64$

(4)
$$3 + 4x^2 = -85$$
 (5) $-5x^2 = -500$

(6)
$$2(x-5) = 10$$
 (7) $4x - 5 - 2x = 3 + x$ (8) $5x - 10 = 5$

(9) $10x + 6 \le 26$ (10) 3 - 2x < 16

Solving a System of Linear Equations:

Solving a system by graphing:

Solving a system by substitution:

Notes:

Steps:

- Isolate one variable of <u>one</u> equation (pick the easiest).
- (2) Substitute the expression from step 1 into <u>the other</u> equation. Solve.
- (3) You're half way! Substitute that solution into the original equation and solve for the remaining variable.
- (4) Answer will always be a coordinate point.

Solving a system by elimination:

Notes:	Steps:
	 Rearrange the equations into Standard Form (Ax + By = C) If a variable does not eliminate, multiply one or both equations to get <u>opposite</u> coefficients of the same variable. Add the columns together (one variable should eliminate). Solve for the remaining variable. Half way! Take that solution and plug it into either equation and solve for the remaining variable. Answer is always a coordinate point.

Solving a system of inequalities:

Notes:	Steps:
	(1) Rearrange both equations into either "SIF" or "SF".
	(2) Graph both of the lines.
	a. Use a dashed line for >, <
	b. Use a solid line for \geq , \leq
	c. Shade above for \geq , >; below for \leq , < ****
	(3) Pick a point in the shaded area to check your solution
	tt

Practice:

For #1-2, use <u>elimination</u> to solve the system of equations.

(1)
$$-4x - 2y = -12$$

 $4x + 8y = -24$
(2) $-3x + 7y = -16$
 $-9x + 5y = 16$

For #3-4, use **<u>substitution</u>** to solve the system of equations.

(3)
$$y = -8x - 16$$

(4) $x - y = 11$
 $2x = 19 - y$

For #5-6, use **graphing** to solve the system of equations.

(5)
$$y = x + 1$$

(6) $-2x - y = -6$
 $2y = -x - 6$

Graph the system of inequalities:

(1) $y \ge \frac{1}{2}x - 4$ y > -2x + 3

(2) $y \ge -5$

y < 3x + 2

Write the equation of the line from the graph:

Exponential Growth and Decay:

Ex 1). In an experiment it has been noted that a certain drug kills the salmonella bacteria at a rate of 9% per hour. If the initial population of the bacteria was 100,000, what will it be 5 hours after taking the drug?

Ex 2). Today you bought a truck for \$10,000. The price of the truck depreciates at a rate of 8% per year. What would the price of the truck be after 7 years?

Practice:

- (1) Find the bank account balance if the account starts with \$100, has an annual rate of 4%, and the money was left in the account for 12 years.
- (2) You buy a new computer for \$2,100. The computer decreases by 50% annually. What will the price of the computer be in 3 years?